These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34235484)

  • 1. Testing the length limit of loop grafting in a helical repeat protein.
    Ripka JF; Perez-Riba A; Chaturbedy PK; Itzhaki LS
    Curr Res Struct Biol; 2021; 3():30-40. PubMed ID: 34235484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering mono- and multi-valent inhibitors on a modular scaffold.
    Diamante A; Chaturbedy PK; Rowling PJE; Kumita JR; Eapen RS; McLaughlin SH; de la Roche M; Perez-Riba A; Itzhaki LS
    Chem Sci; 2021 Jan; 12(3):880-895. PubMed ID: 33623657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring new strategies for grafting binding peptides onto protein loops using a consensus-designed tetratricopeptide repeat scaffold.
    Madden SK; Perez-Riba A; Itzhaki LS
    Protein Sci; 2019 Apr; 28(4):738-745. PubMed ID: 30746804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the binding of rationally engineered tandem-repeat proteins to E3 ubiquitin ligase Keap1.
    Madden SK; Itzhaki LS
    Protein Eng Des Sel; 2021 Feb; 34():. PubMed ID: 34882773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-Dependent Energetics of Loop Extensions in a Family of Tandem-Repeat Proteins.
    Perez-Riba A; Lowe AR; Main ERG; Itzhaki LS
    Biophys J; 2018 Jun; 114(11):2552-2562. PubMed ID: 29874606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negatively Charged Disordered Regions are Prevalent and Functionally Important Across Proteomes.
    Bigman LS; Iwahara J; Levy Y
    J Mol Biol; 2022 Jul; 434(14):167660. PubMed ID: 35659505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling a tandem-repeat protein: Impact of multiple loop insertions on a modular scaffold.
    Perez-Riba A; Komives E; Main ERG; Itzhaki LS
    Sci Rep; 2019 Oct; 9(1):15439. PubMed ID: 31659184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Repeat Protein Hybrids: The New Horizon for Biologic Medicines and Diagnostic Tools.
    Uribe KB; Guisasola E; Aires A; López-Martínez E; Guedes G; Sasselli IR; Cortajarena AL
    Acc Chem Res; 2021 Nov; 54(22):4166-77. PubMed ID: 34730945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive and modular intrinsically disordered segments in C. elegans TTN-1 and implications in filament binding, elasticity and oblique striation.
    Forbes JG; Flaherty DB; Ma K; Qadota H; Benian GM; Wang K
    J Mol Biol; 2010 May; 398(5):672-89. PubMed ID: 20346955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins?
    Basu S; Bahadur RP
    J Struct Biol; 2020 Feb; 209(2):107428. PubMed ID: 31756456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome.
    Davey NE; Seo MH; Yadav VK; Jeon J; Nim S; Krystkowiak I; Blikstad C; Dong D; Markova N; Kim PM; Ivarsson Y
    FEBS J; 2017 Feb; 284(3):485-498. PubMed ID: 28002650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.
    Millership C; Phillips JJ; Main ER
    J Mol Biol; 2016 May; 428(9 Pt A):1804-17. PubMed ID: 26947150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics Approaches for Predicting Disordered Protein Motifs.
    Bhowmick P; Guharoy M; Tompa P
    Adv Exp Med Biol; 2015; 870():291-318. PubMed ID: 26387106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence.
    Ruff KM
    Methods Mol Biol; 2020; 2141():347-389. PubMed ID: 32696367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Disorder in Tetratricopeptide Repeat Proteins.
    Van Bibber NW; Haerle C; Khalife R; Xue B; Uversky VN
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32466138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markov models of amino acid substitution to study proteins with intrinsically disordered regions.
    Szalkowski AM; Anisimova M
    PLoS One; 2011; 6(5):e20488. PubMed ID: 21647374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation.
    Dettori LG; Torrejon D; Chakraborty A; Dutta A; Mohamed M; Papp C; Kuznetsov VA; Sung P; Feng W; Bah A
    Front Mol Biosci; 2021; 8():691694. PubMed ID: 34179096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembling systems comprising intrinsically disordered protein polymers like elastin-like recombinamers.
    Juanes-Gusano D; Santos M; Reboto V; Alonso M; Rodríguez-Cabello JC
    J Pept Sci; 2022 Jan; 28(1):e3362. PubMed ID: 34545666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short Linear Motifs (SLiMs) in "Core" RxLR Effectors of
    Chepsergon J; Nxumalo CI; Salasini BSC; Kanzi AM; Moleleki LN
    Microbiol Spectr; 2022 Apr; 10(2):e0177421. PubMed ID: 35404090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.