BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34235490)

  • 1. Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations.
    Nunes-Alves A; Kokh DB; Wade RC
    Curr Res Struct Biol; 2021; 3():106-111. PubMed ID: 34235490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times.
    Kokh DB; Kaufmann T; Kister B; Wade RC
    Front Mol Biosci; 2019; 6():36. PubMed ID: 31179286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A workflow for exploring ligand dissociation from a macromolecule: Efficient random acceleration molecular dynamics simulation and interaction fingerprint analysis of ligand trajectories.
    Kokh DB; Doser B; Richter S; Ormersbach F; Cheng X; Wade RC
    J Chem Phys; 2020 Sep; 153(12):125102. PubMed ID: 33003755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Drug-Target Residence Times by τ-Random Acceleration Molecular Dynamics Simulations.
    Kokh DB; Amaral M; Bomke J; Grädler U; Musil D; Buchstaller HP; Dreyer MK; Frech M; Lowinski M; Vallee F; Bianciotto M; Rak A; Wade RC
    J Chem Theory Comput; 2018 Jul; 14(7):3859-3869. PubMed ID: 29768913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G Protein-Coupled Receptor-Ligand Dissociation Rates and Mechanisms from τRAMD Simulations.
    Kokh DB; Wade RC
    J Chem Theory Comput; 2021 Oct; 17(10):6610-6623. PubMed ID: 34495672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of water and steric constraints in the kinetics of cavity-ligand unbinding.
    Tiwary P; Mondal J; Morrone JA; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12015-9. PubMed ID: 26371312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attempting Well-Tempered Funnel Metadynamics Simulations for the Evaluation of the Binding Kinetics of Methionine Aminopeptidase-II Inhibitors.
    Rubina ; Moin ST
    J Chem Inf Model; 2023 Dec; 63(24):7729-7743. PubMed ID: 38059911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven classification of ligand unbinding pathways.
    Ray D; Parrinello M
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2313542121. PubMed ID: 38412121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions.
    Lotz SD; Dickson A
    J Am Chem Soc; 2018 Jan; 140(2):618-628. PubMed ID: 29303257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
    Tang Z; Chen SH; Chang CA
    J Chem Theory Comput; 2020 Mar; 16(3):1882-1895. PubMed ID: 32031801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand escape pathways and (un)binding free energy calculations for the hexameric insulin-phenol complex.
    Vashisth H; Abrams CF
    Biophys J; 2008 Nov; 95(9):4193-204. PubMed ID: 18676643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics.
    Zhou S; Weiß RG; Cheng LT; Dzubiella J; McCammon JA; Li B
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14989-14994. PubMed ID: 31270236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.
    Lamim Ribeiro JM; Tiwary P
    J Chem Theory Comput; 2019 Jan; 15(1):708-719. PubMed ID: 30525598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating Drug-Target Residence Time in Kinases through Enhanced Sampling Simulations.
    Gobbo D; Piretti V; Di Martino RMC; Tripathi SK; Giabbai B; Storici P; Demitri N; Girotto S; Decherchi S; Cavalli A
    J Chem Theory Comput; 2019 Aug; 15(8):4646-4659. PubMed ID: 31246463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of Ligand Binding Through Advanced Computational Approaches: A Review.
    Dickson A; Tiwary P; Vashisth H
    Curr Top Med Chem; 2017; 17(23):2626-2641. PubMed ID: 28413946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residence Time Prediction of Type 1 and 2 Kinase Inhibitors from Unbinding Simulations.
    Braka A; Garnier N; Bonnet P; Aci-Sèche S
    J Chem Inf Model; 2020 Jan; 60(1):342-348. PubMed ID: 31834793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
    Sun J; Raymundo MAV; Chang CA
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in molecular simulation methods for drug binding kinetics.
    Nunes-Alves A; Kokh DB; Wade RC
    Curr Opin Struct Biol; 2020 Oct; 64():126-133. PubMed ID: 32771530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward High-Throughput Predictive Modeling of Protein Binding/Unbinding Kinetics.
    Chiu SH; Xie L
    J Chem Inf Model; 2016 Jun; 56(6):1164-74. PubMed ID: 27159844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.