BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34235654)

  • 1. Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy.
    Manina G; Dhar N
    Methods Mol Biol; 2021; 2314():205-229. PubMed ID: 34235654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy.
    Dhar N; Manina G
    Methods Mol Biol; 2015; 1285():241-56. PubMed ID: 25779320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic system for long-term time-lapse microscopy studies of mycobacteria.
    Golchin SA; Stratford J; Curry RJ; McFadden J
    Tuberculosis (Edinb); 2012 Nov; 92(6):489-96. PubMed ID: 22954584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy.
    Bamford RA; Smith A; Metz J; Glover G; Titball RW; Pagliara S
    BMC Biol; 2017 Dec; 15(1):121. PubMed ID: 29262826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing Microbial Population Heterogeneity-Expanding the Toolbox of Microfluidic Single-Cell Cultivations.
    Leygeber M; Lindemann D; Sachs CC; Kaganovitch E; Wiechert W; Nöh K; Kohlheyer D
    J Mol Biol; 2019 Nov; 431(23):4569-4588. PubMed ID: 31034885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
    Grünberger A; Probst C; Helfrich S; Nanda A; Stute B; Wiechert W; von Lieres E; Nöh K; Frunzke J; Kohlheyer D
    Cytometry A; 2015 Dec; 87(12):1101-15. PubMed ID: 26348020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidics for single-cell lineage tracking over time to characterize transmission of phenotypes in
    Bheda P; Aguilar-Gómez D; Kukhtevich I; Becker J; Charvin G; Kirmizis A; Schneider R
    STAR Protoc; 2020 Dec; 1(3):100228. PubMed ID: 33377118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic cell-trapping device to study dynamic host-microbe interactions at the single-cell level.
    Toniolo C; Delincé M; McKinney JD
    Methods Cell Biol; 2018; 147():199-213. PubMed ID: 30165958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolating live cells after high-throughput, long-term, time-lapse microscopy.
    Luro S; Potvin-Trottier L; Okumus B; Paulsson J
    Nat Methods; 2020 Jan; 17(1):93-100. PubMed ID: 31768062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput detection and tracking of cells and intracellular spots in mother machine experiments.
    Ollion J; Elez M; Robert L
    Nat Protoc; 2019 Nov; 14(11):3144-3161. PubMed ID: 31554957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial single-cell analysis in picoliter-sized batch cultivation chambers.
    Kaganovitch E; Steurer X; Dogan D; Probst C; Wiechert W; Kohlheyer D
    N Biotechnol; 2018 Dec; 47():50-59. PubMed ID: 29550523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-sensitive digital quantification of proteins and mRNA in single cells.
    Lin J; Jordi C; Son M; Van Phan H; Drayman N; Abasiyanik MF; Vistain L; Tu HL; Tay S
    Nat Commun; 2019 Aug; 10(1):3544. PubMed ID: 31391463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic positioning chamber for long-term live-cell imaging.
    Hanson L; Cui L; Xie C; Cui B
    Microsc Res Tech; 2011 Jun; 74(6):496-501. PubMed ID: 20936672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell, Time-Lapse Reactive Oxygen Species Detection in E. coli.
    Yang Z; Choi H
    Curr Protoc Cell Biol; 2018 Sep; 80(1):e60. PubMed ID: 30028910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using time-lapse fluorescence microscopy to study gene regulation.
    Zou F; Bai L
    Methods; 2019 Apr; 159-160():138-145. PubMed ID: 30599195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Watching DNA Replication Inhibitors in Action: Exploiting Time-Lapse Microfluidic Microscopy as a Tool for Target-Drug Interaction Studies in
    Trojanowski D; Kołodziej M; Hołówka J; Müller R; Zakrzewska-Czerwińska J
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31383667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell migration in confinement: a micro-channel-based assay.
    Heuzé ML; Collin O; Terriac E; Lennon-Duménil AM; Piel M
    Methods Mol Biol; 2011; 769():415-34. PubMed ID: 21748692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics.
    Son K; Brumley DR; Stocker R
    Nat Rev Microbiol; 2015 Dec; 13(12):761-75. PubMed ID: 26568072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Parallel Adder Coordinates Mycobacterial Cell-Cycle Progression and Cell-Size Homeostasis in the Context of Asymmetric Growth and Organization.
    Logsdon MM; Ho PY; Papavinasasundaram K; Richardson K; Cokol M; Sassetti CM; Amir A; Aldridge BB
    Curr Biol; 2017 Nov; 27(21):3367-3374.e7. PubMed ID: 29107550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biphasic growth model for cell pole elongation in mycobacteria.
    Hannebelle MTM; Ven JXY; Toniolo C; Eskandarian HA; Vuaridel-Thurre G; McKinney JD; Fantner GE
    Nat Commun; 2020 Jan; 11(1):452. PubMed ID: 31974342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.