BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34235660)

  • 1. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis.
    Murphy KC
    Methods Mol Biol; 2021; 2314():301-321. PubMed ID: 34235660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes.
    Murphy KC; Nelson SJ; Nambi S; Papavinasasundaram K; Baer CE; Sassetti CM
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombineering in Non-Model Bacteria.
    Corts A; Thomason LC; Costantino N; Court DL
    Curr Protoc; 2022 Dec; 2(12):e605. PubMed ID: 36546891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterial recombineering.
    Murphy KC; Papavinasasundaram K; Sassetti CM
    Methods Mol Biol; 2015; 1285():177-99. PubMed ID: 25779316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycobacterial recombineering.
    van Kessel JC; Hatfull GF
    Methods Mol Biol; 2008; 435():203-15. PubMed ID: 18370078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets.
    van Kessel JC; Hatfull GF
    Mol Microbiol; 2008 Mar; 67(5):1094-107. PubMed ID: 18221264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional recT gene for recombineering of Clostridium.
    Dong H; Tao W; Gong F; Li Y; Zhang Y
    J Biotechnol; 2014 Mar; 173():65-7. PubMed ID: 24384234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
    Sawitzke JA; Thomason LC; Bubunenko M; Li X; Costantino N; Court DL
    Methods Enzymol; 2013; 533():157-77. PubMed ID: 24182922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombineering in Mycobacterium tuberculosis.
    van Kessel JC; Hatfull GF
    Nat Methods; 2007 Feb; 4(2):147-52. PubMed ID: 17179933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis.
    Shenkerman Y; Elharar Y; Vishkautzan M; Gur E
    Gene; 2014 Jan; 533(1):374-8. PubMed ID: 24100088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria.
    Wang X; Zheng W; Zhou H; Tu Q; Tang YJ; Stewart AF; Zhang Y; Bian X
    Nucleic Acids Res; 2022 Feb; 50(3):e15. PubMed ID: 34792175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Novel Live Genetically Modified BCG Vaccine Candidates Using Recombineering Tools.
    Flores-Valdez MA; Aceves-Sánchez MJ
    Methods Mol Biol; 2022; 2410():367-385. PubMed ID: 34914058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oligonucleotide recombination: a hidden treasure.
    Swingle B; Markel E; Cartinhour S
    Bioeng Bugs; 2010; 1(4):263-6. PubMed ID: 21327058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oligonucleotide recombination in Gram-negative bacteria.
    Swingle B; Markel E; Costantino N; Bubunenko MG; Cartinhour S; Court DL
    Mol Microbiol; 2010 Jan; 75(1):138-48. PubMed ID: 19943907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering.
    Sawitzke JA; Costantino N; Li XT; Thomason LC; Bubunenko M; Court C; Court DL
    J Mol Biol; 2011 Mar; 407(1):45-59. PubMed ID: 21256136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.
    Van Pijkeren JP; Neoh KM; Sirias D; Findley AS; Britton RA
    Bioengineered; 2012; 3(4):209-17. PubMed ID: 22750793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced specialized transduction using recombineering in Mycobacterium tuberculosis.
    Tufariello JM; Malek AA; Vilchèze C; Cole LE; Ratner HK; González PA; Jain P; Hatfull GF; Larsen MH; Jacobs WR
    mBio; 2014 May; 5(3):e01179-14. PubMed ID: 24865558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and Scalable Precision Genome Editing in
    Penewit K; Holmes EA; McLean K; Ren M; Waalkes A; Salipante SJ
    mBio; 2018 Feb; 9(1):. PubMed ID: 29463653
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.