These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34235660)

  • 21. Modifying bacteriophage lambda with recombineering.
    Thomason LC; Oppenheim AB; Court DL
    Methods Mol Biol; 2009; 501():239-51. PubMed ID: 19066825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 23. Yeast oligo-mediated genome engineering (YOGE).
    DiCarlo JE; Conley AJ; Penttilä M; Jäntti J; Wang HH; Church GM
    ACS Synth Biol; 2013 Dec; 2(12):741-9. PubMed ID: 24160921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides.
    Oppenheim AB; Rattray AJ; Bubunenko M; Thomason LC; Court DL
    Virology; 2004 Feb; 319(2):185-9. PubMed ID: 14980479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic Engineering by DNA Recombineering.
    Papa LJ; Shoulders MD
    Curr Protoc Chem Biol; 2019 Sep; 11(3):e70. PubMed ID: 31483098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis.
    Bardarov S; Bardarov S; Pavelka MS; Sambandamurthy V; Larsen M; Tufariello J; Chan J; Hatfull G; Jacobs WR
    Microbiology (Reading); 2002 Oct; 148(Pt 10):3007-3017. PubMed ID: 12368434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates.
    Balasubramanian V; Pavelka MS; Bardarov SS; Martin J; Weisbrod TR; McAdam RA; Bloom BR; Jacobs WR
    J Bacteriol; 1996 Jan; 178(1):273-9. PubMed ID: 8550428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria.
    Swingle BM
    Methods Mol Biol; 2013; 978():127-32. PubMed ID: 23423893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial Genetic Engineering by Means of Recombineering for Reverse Genetics.
    Fels U; Gevaert K; Van Damme P
    Front Microbiol; 2020; 11():548410. PubMed ID: 33013782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aminoglycoside 2'-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2')-Ic gene from Mycobacterium tuberculosis and the aac(2')-Id gene from Mycobacterium smegmatis.
    Aínsa JA; Pérez E; Pelicic V; Berthet FX; Gicquel B; Martín C
    Mol Microbiol; 1997 Apr; 24(2):431-41. PubMed ID: 9159528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An improved Xer-cise technology for the generation of multiple unmarked mutants in Mycobacteria.
    Boudehen YM; Wallat M; Rousseau P; Neyrolles O; Gutierrez C
    Biotechniques; 2020 Feb; 68(2):106-110. PubMed ID: 31937110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplex Genome Editing in Escherichia coli.
    Jensen SI; Nielsen AT
    Methods Mol Biol; 2018; 1671():119-129. PubMed ID: 29170956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial DNA polymerases participate in oligonucleotide recombination.
    Li XT; Thomason LC; Sawitzke JA; Costantino N; Court DL
    Mol Microbiol; 2013 Jun; 88(5):906-20. PubMed ID: 23634873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Creation of Golden Gate constructs for gene doctoring.
    Thomson NM; Zhang C; Trampari E; Pallen MJ
    BMC Biotechnol; 2020 Oct; 20(1):54. PubMed ID: 33028286
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comprehensive study of instable regions in Pseudomonas aeruginosa and Mycobacterium tuberculosis.
    Wang D; Li J; Wang L
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):133. PubMed ID: 30458797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new recombineering system for precise genome-editing in Shewanella oneidensis strain MR-1 using single-stranded oligonucleotides.
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    Sci Rep; 2019 Jan; 9(1):39. PubMed ID: 30631105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA.
    Marinelli LJ; Piuri M; Hatfull GF
    Methods Mol Biol; 2019; 1898():69-80. PubMed ID: 30570724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.