BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34235662)

  • 1. CRISPR Interference (CRISPRi) for Targeted Gene Silencing in Mycobacteria.
    Wong AI; Rock JM
    Methods Mol Biol; 2021; 2314():343-364. PubMed ID: 34235662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform.
    Rock JM; Hopkins FF; Chavez A; Diallo M; Chase MR; Gerrick ER; Pritchard JR; Church GM; Rubin EJ; Sassetti CM; Schnappinger D; Fortune SM
    Nat Microbiol; 2017 Feb; 2():16274. PubMed ID: 28165460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a novel CRISPRi-based tool for silencing of multiple genes in Mycobacterium tuberculosis.
    Agarwal N
    Plasmid; 2020 Jul; 110():102515. PubMed ID: 32535164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria.
    Fleck N; Grundner C
    J Biol Chem; 2021 Aug; 297(2):100990. PubMed ID: 34298016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene silencing by CRISPR interference in mycobacteria.
    Choudhary E; Thakur P; Pareek M; Agarwal N
    Nat Commun; 2015 Feb; 6():6267. PubMed ID: 25711368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria.
    Zhang Y; Yang J; Bai G
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29378893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiplex CRISPR interference tool for virulence gene interrogation in Legionella pneumophila.
    Ellis NA; Kim B; Tung J; Machner MP
    Commun Biol; 2021 Feb; 4(1):157. PubMed ID: 33542442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Gene Knockdown in Diverse Bacteria Using Mobile-CRISPRi.
    Banta AB; Ward RD; Tran JS; Bacon EE; Peters JM
    Curr Protoc Microbiol; 2020 Dec; 59(1):e130. PubMed ID: 33332762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies of genome editing in mycobacteria: Achievements and challenges.
    Choudhary E; Lunge A; Agarwal N
    Tuberculosis (Edinb); 2016 May; 98():132-8. PubMed ID: 27156629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection.
    Cheung CY; McNeil MB; Cook GM
    J Antimicrob Chemother; 2022 Feb; 77(3):615-619. PubMed ID: 34850009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the CRISPRi system to repress sepF expression in Mycobacterium smegmatis.
    Xiao J; Jia H; Pan L; Li Z; Lv L; Du B; Zhang L; Du F; Huang Y; Cao T; Sun Q; Wei R; Xing A; Zhang Z
    Infect Genet Evol; 2019 Aug; 72():183-190. PubMed ID: 31242975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and implementation of a Type I-C CRISPR-based programmable repression system for
    Geslewitz WE; Cardenas A; Zhou X; Zhang Y; Criss AK; Seifert HS
    mBio; 2024 Feb; 15(2):e0302523. PubMed ID: 38126782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in
    McNeil MB; Cook GM
    Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31160289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis.
    Afonina I; Ong J; Chua J; Lu T; Kline KA
    mBio; 2020 Oct; 11(5):. PubMed ID: 33082254
    [No Abstract]   [Full Text] [Related]  

  • 18. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
    Bendixen L; Jensen TI; Bak RO
    Mol Ther; 2023 Jul; 31(7):1920-1937. PubMed ID: 36964659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Gene Silencing Followed by Antimicrobial Susceptibility Testing for Target Validation in Antibiotic Discovery.
    Daniel C; Willcocks S; Bhakta S
    Methods Mol Biol; 2024; 2833():23-33. PubMed ID: 38949697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The New State of the Art: Cas9 for Gene Activation and Repression.
    La Russa MF; Qi LS
    Mol Cell Biol; 2015 Nov; 35(22):3800-9. PubMed ID: 26370509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.