These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34235662)

  • 41. Development of a suicide gene as a novel approach to killing Mycobacterium tuberculosis.
    Rom WN; Yie TA; Tchou-Wong KM
    Am J Respir Crit Care Med; 1997 Dec; 156(6):1993-8. PubMed ID: 9412585
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene Silencing Through CRISPR Interference in Bacteria: Current Advances and Future Prospects.
    Zhang R; Xu W; Shao S; Wang Q
    Front Microbiol; 2021; 12():635227. PubMed ID: 33868193
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering RNA Virus Interference via the CRISPR/Cas13 Machinery in Arabidopsis.
    Aman R; Mahas A; Butt H; Aljedaani F; Mahfouz M
    Viruses; 2018 Dec; 10(12):. PubMed ID: 30572690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [CRISPR/Cas system for genome editing in pluripotent stem cells].
    Vasil'eva EA; Melino D; Barlev NA
    Tsitologiia; 2015; 57(1):19-30. PubMed ID: 25872372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa.
    Xiang L; Qi F; Jiang L; Tan J; Deng C; Wei Z; Jin S; Huang G
    Lett Appl Microbiol; 2020 Oct; 71(4):386-393. PubMed ID: 32506497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR Tools To Control Gene Expression in Bacteria.
    Vigouroux A; Bikard D
    Microbiol Mol Biol Rev; 2020 May; 84(2):. PubMed ID: 32238445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR Interference for Rapid Knockdown of Essential Cell Cycle Genes in
    Myrbråten IS; Wiull K; Salehian Z; Håvarstein LS; Straume D; Mathiesen G; Kjos M
    mSphere; 2019 Mar; 4(2):. PubMed ID: 30894429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi).
    Woolston BM; Emerson DF; Currie DH; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():243-253. PubMed ID: 29906505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [CRISPR Interference in Regulation of Bacterial Gene Expression].
    Nadolinskaia NI; Goncharenko AV
    Mol Biol (Mosk); 2022; 56(6):892-899. PubMed ID: 36475476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CRISPR-Cas9 Based Engineering of Actinomycetal Genomes.
    Tong Y; Charusanti P; Zhang L; Weber T; Lee SY
    ACS Synth Biol; 2015 Sep; 4(9):1020-9. PubMed ID: 25806970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Re-sensitization of
    Faulkner V; Cox AA; Goh S; van Bohemen A; Gibson AJ; Liebster O; Wren BW; Willcocks S; Kendall SL
    Front Microbiol; 2020; 11():619427. PubMed ID: 33597931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
    Bendixen L; Jensen TI; Bak RO
    Mol Ther; 2023 Jul; 31(7):1920-1937. PubMed ID: 36964659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of different types of CRISPR/Cas-based systems in bacteria.
    Liu Z; Dong H; Cui Y; Cong L; Zhang D
    Microb Cell Fact; 2020 Sep; 19(1):172. PubMed ID: 32883277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple Gene Repression in Cyanobacteria Using CRISPRi.
    Yao L; Cengic I; Anfelt J; Hudson EP
    ACS Synth Biol; 2016 Mar; 5(3):207-12. PubMed ID: 26689101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR interference-based specific and efficient gene inactivation in the brain.
    Zheng Y; Shen W; Zhang J; Yang B; Liu YN; Qi H; Yu X; Lu SY; Chen Y; Xu YZ; Li Y; Gage FH; Mi S; Yao J
    Nat Neurosci; 2018 Mar; 21(3):447-454. PubMed ID: 29403034
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR-Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes.
    Tong Y; Whitford CM; Blin K; Jørgensen TS; Weber T; Lee SY
    Nat Protoc; 2020 Aug; 15(8):2470-2502. PubMed ID: 32651565
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial CRISPR: accomplishments and prospects.
    Peters JM; Silvis MR; Zhao D; Hawkins JS; Gross CA; Qi LS
    Curr Opin Microbiol; 2015 Oct; 27():121-6. PubMed ID: 26363124
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-Scale Perturbation of Long Noncoding RNA Expression Using CRISPR Interference.
    Liu SJ; Horlbeck MA; Weissman JS; Lim DA
    Methods Mol Biol; 2021; 2254():323-338. PubMed ID: 33326085
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR interference-guided modulation of glucose pathways to boost aconitic acid production in Escherichia coli.
    Li Q; Zhao P; Yin H; Liu Z; Zhao H; Tian P
    Microb Cell Fact; 2020 Sep; 19(1):174. PubMed ID: 32883305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.