These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34235791)

  • 21. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting.
    Rajeshkhanna G; Singh TI; Kim NH; Lee JH
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42453-42468. PubMed ID: 30430830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis.
    Dionigi F; Reier T; Pawolek Z; Gliech M; Strasser P
    ChemSusChem; 2016 May; 9(9):962-72. PubMed ID: 27010750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H
    Zhang Y; Qiu Y; Wang Y; Li B; Zhang Y; Ma Z; Liu S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3937-3948. PubMed ID: 33439615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arousing the Reactive Fe Sites in Pyrite (FeS
    Tan Z; Sharma L; Kakkar R; Meng T; Jiang Y; Cao M
    Inorg Chem; 2019 Jun; 58(11):7615-7627. PubMed ID: 31074996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterolayered Ni-Fe Hydroxide/Oxide Nanostructures Generated on a Stainless-Steel Substrate for Efficient Alkaline Water Splitting.
    Todoroki N; Wadayama T
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44161-44169. PubMed ID: 31670501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tellurium Triggered Formation of Te/Fe-NiOOH Nanocubes as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting.
    Ibraheem S; Li X; Shah SSA; Najam T; Yasin G; Iqbal R; Hussain S; Ding W; Shahzad F
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10972-10978. PubMed ID: 33641328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fe
    Li L; Zhang G; Wang B; Zhu D; Liu D; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37152-37161. PubMed ID: 34318662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Hydrogen Evolution of Oxidized Ni-N
    Zang W; Sun T; Yang T; Xi S; Waqar M; Kou Z; Lyu Z; Feng YP; Wang J; Pennycook SJ
    Adv Mater; 2021 Feb; 33(8):e2003846. PubMed ID: 33349991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen-Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis.
    Xi W; Yan G; Lang Z; Ma Y; Tan H; Zhu H; Wang Y; Li Y
    Small; 2018 Oct; 14(42):e1802204. PubMed ID: 30239123
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction.
    Liao H; Tan P; Dong R; Jiang M; Hu X; Lu L; Wang Y; Liu H; Liu Y; Pan J
    J Colloid Interface Sci; 2021 Jun; 591():307-313. PubMed ID: 33618290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-step synthesis of amorphous nickel iron phosphide hierarchical nanostructures for water electrolysis with superb stability at high current density.
    Yu X; He X; Li R; Gou X
    Dalton Trans; 2021 Jun; 50(23):8102-8110. PubMed ID: 34019054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode.
    Li RQ; Li S; Lu M; Shi Y; Qu K; Zhu Y
    J Colloid Interface Sci; 2020 Jul; 571():48-54. PubMed ID: 32179308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong Electronic Interaction in Dual-Cation-Incorporated NiSe
    Sun Y; Xu K; Wei Z; Li H; Zhang T; Li X; Cai W; Ma J; Fan HJ; Li Y
    Adv Mater; 2018 Aug; 30(35):e1802121. PubMed ID: 30129696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomistic Investigation of Doping Effects on Electrocatalytic Properties of Cobalt Oxides for Water Oxidation.
    Kim B; Park I; Yoon G; Kim JS; Kim H; Kang K
    Adv Sci (Weinh); 2018 Dec; 5(12):1801632. PubMed ID: 30581721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation.
    Feng Z; Wang E; Huang S; Liu J
    Nanoscale; 2020 Feb; 12(7):4426-4434. PubMed ID: 32026923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosted Oxygen Evolution Reactivity via Atomic Iron Doping in Cobalt Carbonate Hydroxide Hydrate.
    Zhang S; Huang B; Wang L; Zhang X; Zhu H; Zhu X; Li J; Guo S; Wang E
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40220-40228. PubMed ID: 32805817
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.
    Bau JA; Luber EJ; Buriak JM
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19755-63. PubMed ID: 26293239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale Engineering of Nonprecious Metal Electrocatalyst for Realizing Ultrastable Seawater Splitting in Weakly Alkaline Solution.
    Li J; Yu T; Wang K; Li Z; He J; Wang Y; Lei L; Zhuang L; Zhu M; Lian C; Shao Z; Xu Z
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202387. PubMed ID: 35798320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-redox doping boosts oxygen evolution electrocatalysis on hematite.
    Nguyën HC; Garcés-Pineda FA; de Fez-Febré M; Galán-Mascarós JR; López N
    Chem Sci; 2020 Jan; 11(9):2464-2471. PubMed ID: 34084411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.