These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 34236057)
1. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Zhong J; Liang M; Ai Y Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles. Yang D; Ai Y Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations. Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067 [TBL] [Abstract][Full Text] [Related]
4. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309 [TBL] [Abstract][Full Text] [Related]
6. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. Wu G; Zhang Z; Du M; Wu D; Zhou J; Hao T; Xie X Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667197 [TBL] [Abstract][Full Text] [Related]
7. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Bernabini C; Holmes D; Morgan H Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945 [TBL] [Abstract][Full Text] [Related]
8. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639 [TBL] [Abstract][Full Text] [Related]
9. Impedance-based flow cytometry for the measurement of microparticles. Zwicker JI Semin Thromb Hemost; 2010 Nov; 36(8):819-23. PubMed ID: 21049382 [TBL] [Abstract][Full Text] [Related]
10. Numerical simulation of particle dynamics in an orifice-electrode system. Application to counting and sizing by impedance measurement. Isèbe D; Nérin P Int J Numer Method Biomed Eng; 2013 Apr; 29(4):462-75. PubMed ID: 23349148 [TBL] [Abstract][Full Text] [Related]
11. A Bayesian Approach for Coincidence Resolution in Microfluidic Impedance Cytometry. Caselli F; De Ninno A; Reale R; Businaro L; Bisegna P IEEE Trans Biomed Eng; 2021 Jan; 68(1):340-349. PubMed ID: 32746004 [TBL] [Abstract][Full Text] [Related]
12. Time-domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer. Ashley BK; Hassan U Biotechnol Bioeng; 2021 Nov; 118(11):4428-4440. PubMed ID: 34370302 [TBL] [Abstract][Full Text] [Related]
13. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry. Chen J; Zhong J; Lei H; Ai Y Lab Chip; 2023 Nov; 23(23):5029-5038. PubMed ID: 37909182 [TBL] [Abstract][Full Text] [Related]
14. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer. Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575 [TBL] [Abstract][Full Text] [Related]
15. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array. Zhou C; Shen H; Feng H; Yan Z; Ji B; Yuan X; Zhang R; Chang H Electrophoresis; 2022 Nov; 43(21-22):2156-2164. PubMed ID: 35305273 [TBL] [Abstract][Full Text] [Related]
16. Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination. de Bruijn DS; Ten Eikelder HRA; Papadimitriou VA; Olthuis W; van den Berg A Cytometry A; 2023 Mar; 103(3):221-226. PubMed ID: 36908134 [TBL] [Abstract][Full Text] [Related]
17. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827 [TBL] [Abstract][Full Text] [Related]
18. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination. Tang W; Tang D; Ni Z; Xiang N; Yi H Anal Chem; 2017 Mar; 89(5):3154-3161. PubMed ID: 28264567 [TBL] [Abstract][Full Text] [Related]
20. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes. Sobahi N; Han A Biosens Bioelectron; 2020 Oct; 166():112458. PubMed ID: 32777724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]