These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34236138)

  • 1. Variable structure robust controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach.
    Homayounzade M
    IET Syst Biol; 2021 Aug; 15(6):173-183. PubMed ID: 34236138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive input observer-based controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach.
    Homayounzade M
    IET Syst Biol; 2022 Sep; 16(5):157-172. PubMed ID: 35975823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding-mode-based controllers for automation of blood glucose concentration for type 1 diabetes.
    Babar SA; Ahmad I; Mughal IS
    IET Syst Biol; 2021 Apr; 15(2):72-82. PubMed ID: 33780148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust nonlinear control of blood glucose in diabetic patients subject to model uncertainties.
    Farahmand B; Dehghani M; Vafamand N; Mirzaee A; Boostani R; Pieper JK
    ISA Trans; 2023 Feb; 133():353-368. PubMed ID: 35927074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model free sliding mode controller for blood glucose control: Towards artificial pancreas without need to mathematical model of the system.
    Ebrahimi N; Ozgoli S; Ramezani A
    Comput Methods Programs Biomed; 2020 Oct; 195():105663. PubMed ID: 32750632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized type-2 fuzzy controller based on IoMT for stabilizing the glucose level in type-1 diabetic patients.
    Sayed A; Zalam BA; Elhoushy M; Nabil E
    Sci Rep; 2023 Sep; 13(1):14508. PubMed ID: 37667042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust sliding mode controller with internal model for closed-loop artificial pancreas.
    Abu-Rmileh A; Garcia-Gabin W; Zambrano D
    Med Biol Eng Comput; 2010 Dec; 48(12):1191-201. PubMed ID: 20658267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive technique based blood glucose control in type-1 diabetes mellitus patients.
    Belmon AP; Auxillia J
    Int J Numer Method Biomed Eng; 2020 Aug; 36(8):e3371. PubMed ID: 32453489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bio-inspired glucose controller based on pancreatic β-cell physiology.
    Herrero P; Georgiou P; Oliver N; Johnston DG; Toumazou C
    J Diabetes Sci Technol; 2012 May; 6(3):606-16. PubMed ID: 22768892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-optimal feedback control for postprandial glucose regulation in type 1 diabetes.
    Sanz R; García P; Romero-Vivó S; Díez JL; Bondia J
    ISA Trans; 2023 Feb; 133():345-352. PubMed ID: 36116963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas.
    Beneyto A; Vehi J
    Med Biol Eng Comput; 2018 Nov; 56(11):1973-1986. PubMed ID: 29725915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational proof of concept of a machine-intelligent artificial pancreas using Lyapunov stability and differential game theory.
    Greenwood NJ; Gunton JE
    J Diabetes Sci Technol; 2014 Jul; 8(4):791-806. PubMed ID: 25562888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.
    Ashley B; Liu W
    Math Biosci; 2017 Jul; 289():78-88. PubMed ID: 28495545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing automatic closed-loop glucose control in type 1 diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day variability.
    Herrero P; Bondia J; Adewuyi O; Pesl P; El-Sharkawy M; Reddy M; Toumazou C; Oliver N; Georgiou P
    Comput Methods Programs Biomed; 2017 Jul; 146():125-131. PubMed ID: 28688482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network modeling and control of type 1 diabetes mellitus.
    El-Jabali AK
    Bioprocess Biosyst Eng; 2005 Apr; 27(2):75-9. PubMed ID: 15578231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arbitrary-order sliding mode-based robust control algorithm for the developing artificial pancreas mechanism.
    Alam W; Khan Q; Riaz RA; Akmeliawati R
    IET Syst Biol; 2020 Dec; 14(6):307-313. PubMed ID: 33399094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced hybrid artificial pancreas system improves on unannounced meal response - In silico comparison to currently available system.
    Garcia-Tirado J; Lv D; Corbett JP; Colmegna P; Breton MD
    Comput Methods Programs Biomed; 2021 Nov; 211():106401. PubMed ID: 34560603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance Analysis of Fuzzy-PID Controller for Blood Glucose Regulation in Type-1 Diabetic Patients.
    Yadav J; Rani A; Singh V
    J Med Syst; 2016 Dec; 40(12):254. PubMed ID: 27714563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of blood glucose induced by meals for type-1 diabetics using an adaptive backstepping algorithm.
    Zahedifar R; Keymasi Khalaji A
    Sci Rep; 2022 Jul; 12(1):12228. PubMed ID: 35851835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of an online-tuned model based compound controller for a fully automated artificial pancreas.
    Bhattacharjee A; Easwaran A; Leow MK; Cho N
    Med Biol Eng Comput; 2019 Jul; 57(7):1437-1449. PubMed ID: 30895514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.