These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34236148)

  • 1. Oxidative Conversion of Glucose to Formic Acid as a Renewable Hydrogen Source Using an Abundant Solid Base Catalyst.
    Takagaki A; Obata W; Ishihara T
    ChemistryOpen; 2021 Oct; 10(10):954-959. PubMed ID: 34236148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations.
    Tang Z; Deng W; Wang Y; Zhu E; Wan X; Zhang Q; Wang Y
    ChemSusChem; 2014 Jun; 7(6):1557-67. PubMed ID: 24798653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural mineral bentonite as catalyst for efficient isomerization of biomass-derived glucose to fructose in water.
    Ye X; Shi X; Jin B; Zhong H; Jin F; Wang T
    Sci Total Environ; 2021 Jul; 778():146276. PubMed ID: 33714831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Catalyst-Free Oxidative C-C Bond Cleavage of a Lignin Model Compound by H
    Li X; Zhang Y
    ChemSusChem; 2020 Apr; 13(7):1740-1745. PubMed ID: 32048446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Formic Acid from Glucose with Simultaneous Conversion of Ag
    He R; Ma T; Cheng J; Jin B; Xu J
    ACS Omega; 2021 May; 6(17):11260-11265. PubMed ID: 34056281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Glucose Isomerization to Fructose using Photoregenerable MgSnO
    Wang P; Xue W; Ye J; Zhang R; Kumar R; Cai W; Zhao J
    ChemSusChem; 2024 May; ():e202400637. PubMed ID: 38749979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media.
    Choudhary V; Pinar AB; Lobo RF; Vlachos DG; Sandler SI
    ChemSusChem; 2013 Dec; 6(12):2369-76. PubMed ID: 24106178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Production by Formic Acid Decomposition over Ca Promoted Ni/SiO
    Faroldi B; Paviotti MA; Camino-Manjarrés M; González-Carrazán S; López-Olmos C; Rodríguez-Ramos I
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous upgrading of biomass-derived sugars to HMF/furfural via enzymatically isomerized ketose intermediates.
    Wang W; Mittal A; Pilath H; Chen X; Tucker MP; Johnson DK
    Biotechnol Biofuels; 2019; 12():253. PubMed ID: 31673288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding energy and catalysis by D-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde.
    Toteva MM; Silvaggi NR; Allen KN; Richard JP
    Biochemistry; 2011 Nov; 50(46):10170-81. PubMed ID: 21995300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Cellulose into Formic Acid by Iron(III)-Catalyzed Oxidation with O
    Hou Y; Lin Z; Niu M; Ren S; Wu W
    ACS Omega; 2018 Nov; 3(11):14910-14917. PubMed ID: 31458156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomerization of 6-O-substituted glucose and fructose under neutral pH conditions and subsequent β-elimination reactions.
    Chiku K; Ohfuji A; Ohtake N; Yoshida M; Ono H; Kitaoka M
    Carbohydr Res; 2022 Sep; 519():108626. PubMed ID: 35767916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confinement-Enhanced Selective Oxidation of Lignin Derivatives to Formic Acid Over Fe-Cu/ZSM-5 Catalysts Under Mild Conditions.
    Zhang Z; Han P; Li L; Zhang X; Cheng X; Lin J; Wan S; Xiong H; Wang Y; Wang S
    ChemSusChem; 2022 Jun; 15(12):e202200218. PubMed ID: 35419991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis.
    Dedes G; Karnaouri A; Marianou AA; Kalogiannis KG; Michailof CM; Lappas AA; Topakas E
    Biotechnol Biofuels; 2021 Aug; 14(1):172. PubMed ID: 34454576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable Low-Temperature Hydrogen Production from Lignocellulosic Biomass Passing through Formic Acid: Combination of Biomass Hydrolysis/Oxidation and Formic Acid Dehydrogenation.
    Park JH; Jin MH; Lee DW; Lee YJ; Song GS; Park SJ; Namkung H; Song KH; Choi YC
    Environ Sci Technol; 2019 Dec; 53(23):14041-14053. PubMed ID: 31602972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.