These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34236148)

  • 41. Hydrothermal CO
    Chinchilla MI; Mato FA; Martín Á; Bermejo MD
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Successive C1-C2 bond cleavage: the mechanism of vanadium(v)-catalyzed aerobic oxidation of d-glucose to formic acid in aqueous solution.
    Niu M; Hou Y; Wu W; Ren S; Yang R
    Phys Chem Chem Phys; 2018 Jul; 20(26):17942-17951. PubMed ID: 29926044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective Oxidation of Glycerol into Formic Acid by Photogenerated Holes and Superoxide Radicals.
    Liu M; Liu H; Li N; Zhang C; Zhang J; Wang F
    ChemSusChem; 2022 Oct; 15(19):e202201068. PubMed ID: 35916074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts.
    Sahu R; Dhepe PL
    ChemSusChem; 2012 Apr; 5(4):751-61. PubMed ID: 22411884
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media.
    Choi EK; Park KH; Lee HB; Cho M; Ahn S
    J Environ Sci (China); 2013 Aug; 25(8):1696-702. PubMed ID: 24520710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides.
    Takagaki A; Ohara M; Nishimura S; Ebitani K
    Chem Commun (Camb); 2009 Nov; (41):6276-8. PubMed ID: 19826693
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen Production through Distinctive C-C Cleavage during Acetic Acid Reforming at Low Temperature.
    Shen Y; Yang Z; Tang X; Zhang J; Lv G
    ChemSusChem; 2024 Jun; 17(12):e202301532. PubMed ID: 38321849
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Homogeneous Molecular Iron Catalysts for Direct Photocatalytic Conversion of Formic Acid to Syngas (CO+H
    Irfan RM; Wang T; Jiang D; Yue Q; Zhang L; Cao H; Pan Y; Du P
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14818-14824. PubMed ID: 32374498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How to Change the Reaction Chemistry on Nonprecious Metal Oxide Nanostructure Materials for Electrocatalytic Oxidation of Biomass-Derived Glycerol to Renewable Chemicals.
    Oh LS; Park M; Park YS; Kim Y; Yoon W; Hwang J; Lim E; Park JH; Choi SM; Seo MH; Kim WB; Kim HJ
    Adv Mater; 2023 Jan; 35(4):e2203285. PubMed ID: 35679126
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrogen Production from Formic Acid by In Situ Generated Ni/CdS Photocatalytic System under Visible Light Irradiation.
    Feng KW; Li Y
    ChemSusChem; 2023 May; 16(9):e202202250. PubMed ID: 36705939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic air oxidation of biomass-derived carbohydrates to formic acid.
    Li J; Ding DJ; Deng L; Guo QX; Fu Y
    ChemSusChem; 2012 Jul; 5(7):1313-8. PubMed ID: 22499553
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Facile MOF Support Improvement in Synergy with Light Acceleration for Efficient Nanoalloy-Catalyzed H
    Liu Y; Fu F; Salmon L; Espuche B; Moya S; Berlande M; Pozzo JL; Hamon JR; Astruc D
    ACS Appl Mater Interfaces; 2023 May; 15(19):23343-23352. PubMed ID: 37129910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2-Propanol with Supported Ruthenium Catalysts.
    Wang Y; Agarwal S; Kloekhorst A; Heeres HJ
    ChemSusChem; 2016 May; 9(9):951-61. PubMed ID: 26836970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tautomer Structures in Ketose-Aldose Transformation of 1,3-Dihydroxyacetone Studied by Infrared Electroabsorption Spectroscopy.
    Chen SH; Hiramatsu H
    J Phys Chem B; 2019 Dec; 123(50):10663-10671. PubMed ID: 31765151
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.
    Karinen R; Vilonen K; Niemelä M
    ChemSusChem; 2011 Aug; 4(8):1002-16. PubMed ID: 21728248
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic Study of Glucose Photoreforming over TiO
    Lan L; Daly H; Sung R; Tuna F; Skillen N; Robertson PKJ; Hardacre C; Fan X
    ACS Catal; 2023 Jul; 13(13):8574-8587. PubMed ID: 37441233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.
    Iguchi M; Zhong H; Himeda Y; Kawanami H
    Chemistry; 2017 Dec; 23(70):17788-17793. PubMed ID: 28960487
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals.
    Hara M; Nakajima K; Kamata K
    Sci Technol Adv Mater; 2015 Jun; 16(3):034903. PubMed ID: 27877800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oxidation of Organic Compounds Using Water as the Oxidant with H
    Kar S; Milstein D
    Acc Chem Res; 2022 Aug; 55(16):2304-2315. PubMed ID: 35881940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.