These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34236197)
1. Room Temperature Phosphorescence vs Triplet-Triplet Annihilation in N-Substituted Acridone Solids. Hamzehpoor E; Ruchlin C; Tao Y; Ramos-Sanchez JE; Titi HM; Cosa G; Perepichka DF J Phys Chem Lett; 2021 Jul; 12(27):6431-6438. PubMed ID: 34236197 [TBL] [Abstract][Full Text] [Related]
2. Crystal Engineering of Room Temperature Phosphorescence in Organic Solids. Hamzehpoor E; Perepichka DF Angew Chem Int Ed Engl; 2020 Jun; 59(25):9977-9981. PubMed ID: 31725174 [TBL] [Abstract][Full Text] [Related]
3. Efficient and organic host-guest room-temperature phosphorescence: tunable triplet-singlet crossing and theoretical calculations for molecular packing. Lei Y; Yang J; Dai W; Lan Y; Yang J; Zheng X; Shi J; Tong B; Cai Z; Dong Y Chem Sci; 2021 Apr; 12(19):6518-6525. PubMed ID: 34040727 [TBL] [Abstract][Full Text] [Related]
4. Intermolecular donor-acceptor stacking to suppress triplet exciton diffusion for long-persistent organic room-temperature phosphorescence. Ma J; Dou J; Xu N; Wang G; Duan Y; Liao Y; Yi Y; Geng H J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38421074 [TBL] [Abstract][Full Text] [Related]
5. Cluster-Based Metal-Organic Frameworks: Modulated Singlet-Triplet Excited States and Temperature-Responsive Phosphorescent Switch. Li D; Yang X; Yan D ACS Appl Mater Interfaces; 2018 Oct; 10(40):34377-34384. PubMed ID: 30209936 [TBL] [Abstract][Full Text] [Related]
6. Direct Observation of Ultrafast Access to a Solvent-Independent Singlet-Triplet Equilibrium State in Acridone Solutions. Lv M; Wang X; Pan H; Chen J J Phys Chem B; 2021 Dec; 125(48):13291-13297. PubMed ID: 34841879 [TBL] [Abstract][Full Text] [Related]
7. Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism. Kuno S; Akeno H; Ohtani H; Yuasa H Phys Chem Chem Phys; 2015 Jun; 17(24):15989-95. PubMed ID: 26027521 [TBL] [Abstract][Full Text] [Related]
8. Acridones: Strongly Emissive HIGHrISC Fluorophores. Thom KA; Wieser F; Diestelhorst K; Reiffers A; Czekelius C; Kleinschmidt M; Bracker M; Marian CM; Gilch P J Phys Chem Lett; 2021 Jun; 12(24):5703-5709. PubMed ID: 34125550 [TBL] [Abstract][Full Text] [Related]
9. Heavy-Atom-Free Room-Temperature Phosphorescent Organic Light-Emitting Diodes Enabled by Excited States Engineering. Higginbotham HF; Okazaki M; de Silva P; Minakata S; Takeda Y; Data P ACS Appl Mater Interfaces; 2021 Jan; 13(2):2899-2907. PubMed ID: 33404215 [TBL] [Abstract][Full Text] [Related]
10. Theoretical insights into the excited-state properties of room-temperature phosphorescence-emitting N-substituted naphthalimides. Samanta PK; Pati SK J Mol Model; 2018 Aug; 24(9):246. PubMed ID: 30128608 [TBL] [Abstract][Full Text] [Related]
11. Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet-triplet annihilation upconversions. Guo S; Wu W; Guo H; Zhao J J Org Chem; 2012 Apr; 77(8):3933-43. PubMed ID: 22439855 [TBL] [Abstract][Full Text] [Related]
13. Balanced Energy Gaps as a Key Design Rule for Solution-Phase Organic Room Temperature Phosphorescence. Paredis S; Cardeynaels T; Kuila S; Deckers J; Van Landeghem M; Vandewal K; Danos A; Monkman AP; Champagne B; Maes W Chemistry; 2023 Jul; 29(42):e202301369. PubMed ID: 37154211 [TBL] [Abstract][Full Text] [Related]
14. Organic Room Temperature Phosphorescence from BN-Substituted Xanthene Derivatives. Watson AER; Tao SY; Siemiarczuk A; Boyle PD; Ragogna PJ; Gilroy JB Angew Chem Int Ed Engl; 2024 Oct; ():e202414534. PubMed ID: 39406686 [TBL] [Abstract][Full Text] [Related]
15. The Effect of Electron Donation and Intermolecular Interactions on Ultralong Phosphorescence Lifetime of 4-Carnoyl Phenylboronic Acids. Chen X; Liu ZF; Jin WJ J Phys Chem A; 2020 Apr; 124(14):2746-2754. PubMed ID: 32172561 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, luminescence, and excited-state absorption properties of disubstituted perylene diimide derivatives modified at bay region. Cheng Q; Chen Z; Zhang Q; Zhu S; Liu R; Zhu H Luminescence; 2022 Feb; 37(2):247-254. PubMed ID: 34799958 [TBL] [Abstract][Full Text] [Related]
17. Strongly emissive long-lived 3IL excited state of coumarins in cyclometalated Ir(III) complexes used as triplet photosensitizers and application in triplet-triplet annihilation upconversion. Yi X; Zhang C; Guo S; Ma J; Zhao J Dalton Trans; 2014 Jan; 43(4):1672-83. PubMed ID: 24220517 [TBL] [Abstract][Full Text] [Related]
18. Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazole-Pyrene Bio-Probe. Previtali A; He W; Forni A; Malpicci D; Lucenti E; Marinotto D; Carlucci L; Mercandelli P; Ortenzi MA; Terraneo G; Botta C; Kwok RTK; Lam JWY; Tang BZ; Cariati E Chemistry; 2021 Dec; 27(67):16690-16700. PubMed ID: 34634149 [TBL] [Abstract][Full Text] [Related]
19. Excited-state dynamics of nitrated push-pull molecules: the importance of the relative energy of the singlet and triplet manifolds. Collado-Fregoso E; Zugazagoitia JS; Plaza-Medina EF; Peon J J Phys Chem A; 2009 Dec; 113(48):13498-508. PubMed ID: 19839627 [TBL] [Abstract][Full Text] [Related]
20. Theoretical study of pyrazolate-bridged dinuclear platinum(II) complexes: interesting potential energy curve of the lowest energy triplet excited state and phosphorescence spectra. Saito K; Nakao Y; Sakaki S Inorg Chem; 2008 May; 47(10):4329-37. PubMed ID: 18416550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]