These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 34236204)

  • 1. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.
    Zhou J; Wang H; Zhao Z; Xu R; Lu Q
    BMC Bioinformatics; 2018 May; 19(Suppl 4):60. PubMed ID: 29745837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMPContact: An Interhelical Residue Contact Prediction Method.
    Fang C; Jia Y; Hu L; Lu Y; Wang H
    Biomed Res Int; 2020; 2020():4569037. PubMed ID: 32309431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein secondary structure by the improved TCN-BiLSTM-MHA model with knowledge distillation.
    Zhao L; Li J; Zhan W; Jiang X; Zhang B
    Sci Rep; 2024 Jul; 14(1):16488. PubMed ID: 39020005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DLBLS_SS: protein secondary structure prediction using deep learning and broad learning system.
    Yuan L; Hu X; Ma Y; Liu Y
    RSC Adv; 2022 Nov; 12(52):33479-33487. PubMed ID: 36505696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidential deep learning for trustworthy prediction of enzyme commission number.
    Han SR; Park M; Kosaraju S; Lee J; Lee H; Lee JH; Oh TJ; Kang M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salp-J Colony Optimization-based advanced hybrid ensemble deep predictor with LSTM for protein structure prediction.
    Jadhav S; Vyavahare AJ; Sharma M
    J Biomol Struct Dyn; 2024 Mar; ():1-16. PubMed ID: 38444340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of structural networks across homologous proteins.
    Prabantu VM; Gadiyaram V; Vishveshwara S; Srinivasan N
    Proteins; 2023 Dec; ():. PubMed ID: 38058245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha helical trans-membrane proteins: Enhanced prediction using a Bayesian approach.
    Taylor PD; Toseland CP; Attwood TK; Flower DR
    Bioinformation; 2006 Nov; 1(6):234-6. PubMed ID: 17597896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of soluble functional analogues of integral membrane proteins.
    Goverde CA; Pacesa M; Goldbach N; Dornfeld LJ; Balbi PEM; Georgeon S; Rosset S; Kapoor S; Choudhury J; Dauparas J; Schellhaas C; Kozlov S; Baker D; Ovchinnikov S; Vecchio AJ; Correia BE
    bioRxiv; 2024 Mar; ():. PubMed ID: 38496615
    [No Abstract]   [Full Text] [Related]  

  • 10. AlphaFold2 Predicts Whether Proteins Interact Amidst Confounding Structural Compatibility.
    Martin J
    J Chem Inf Model; 2024 Mar; 64(5):1473-1480. PubMed ID: 38373070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MT-EpiPred: Multitask Learning for Prediction of Small-Molecule Epigenetic Modulators.
    Zhang R; Xie X; Ni D; Wang H; Li J; Xiao W
    J Chem Inf Model; 2024 Jan; 64(1):110-118. PubMed ID: 38109786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide Membrane Protein Structure Prediction.
    Piccoli S; Suku E; Garonzi M; Giorgetti A
    Curr Genomics; 2013 Aug; 14(5):324-9. PubMed ID: 24403851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential and virulence-related protein interactions of pathogens revealed through deep learning.
    Humphreys IR; Zhang J; Baek M; Wang Y; Krishnakumar A; Pei J; Anishchenko I; Tower CA; Jackson BA; Warrier T; Hung DT; Peterson SB; Mougous JD; Cong Q; Baker D
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational screening of damaging nsSNPs in human SOD1 genes associated with amyotrophic lateral sclerosis identifies destabilising effects of G38R and G42D mutations through in silico evaluation.
    Bhor S; Tonny SH; Dinesh S; Sharma S
    In Silico Pharmacol; 2024; 12(1):20. PubMed ID: 38559706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks.
    Gao T; Zhao Y; Zhang L; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications.
    Sun J; Kulandaisamy A; Liu J; Hu K; Gromiha MM; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():1205-1226. PubMed ID: 36817959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for protein secondary structure prediction: Pre and post-AlphaFold.
    Ismi DP; Pulungan R; Afiahayati
    Comput Struct Biotechnol J; 2022; 20():6271-6286. PubMed ID: 36420164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins.
    Li B; Mendenhall J; Capra JA; Meiler J
    J Proteome Res; 2021 Aug; 20(8):4089-4100. PubMed ID: 34236204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.