These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34236318)

  • 1. The solubility product extends the buffering concept to heterotypic biomolecular condensates.
    Chattaraj A; Blinov ML; Loew LM
    Elife; 2021 Jul; 10():. PubMed ID: 34236318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The maximum solubility product marks the threshold for condensation of multivalent biomolecules.
    Chattaraj A; Loew LM
    Biophys J; 2023 May; 122(9):1678-1690. PubMed ID: 36987392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition-dependent thermodynamics of intracellular phase separation.
    Riback JA; Zhu L; Ferrolino MC; Tolbert M; Mitrea DM; Sanders DW; Wei MT; Kriwacki RW; Brangwynne CP
    Nature; 2020 May; 581(7807):209-214. PubMed ID: 32405004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components.
    Espinosa JR; Joseph JA; Sanchez-Burgos I; Garaizar A; Frenkel D; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13238-13247. PubMed ID: 32482873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical theory of biological noise buffering by multicomponent phase separation.
    Deviri D; Safran SA
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34135122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    PLoS Comput Biol; 2022 Feb; 18(2):e1009810. PubMed ID: 35108264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of enzymatic reactions by chemical composition of peptide biomolecular condensates.
    Harris R; Veretnik S; Dewan S; Baruch Leshem A; Lampel A
    Commun Chem; 2024 Apr; 7(1):90. PubMed ID: 38643237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically-encoded phase separation sensors for intracellular probing of biomolecular condensates.
    Regina Chua Avecilla A; Thomas J; Quiroz FG
    bioRxiv; 2024 Aug; ():. PubMed ID: 39257779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein phase separation and its role in chromatin organization and diseases.
    Li J; Zhang Y; Chen X; Ma L; Li P; Yu H
    Biomed Pharmacother; 2021 Jun; 138():111520. PubMed ID: 33765580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of solubility product reveals the interplay of oligomerization and self-association for defining condensate formation.
    Chattaraj A; Baltaci Z; Chung S; Mayer BJ; Loew LM; Ditlev JA
    Mol Biol Cell; 2024 Sep; 35(9):ar122. PubMed ID: 39046778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Separation in Mixtures of Prion-Like Low Complexity Domains is Driven by the Interplay of Homotypic and Heterotypic Interactions.
    Farag M; Borcherds WM; Bremer A; Mittag T; Pappu RV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Silico Analysis of pH-Dependent Liquid-Liquid Phase Separation in Intrinsically Disordered Proteins.
    Pintado-Grima C; Bárcenas O; Ventura S
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates.
    Wessén J; Pal T; Das S; Lin YH; Chan HS
    J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Liquid-Liquid Phase Separation at the Dissolving Drug Salt Particle Surface.
    Uekusa T; Sugano K
    Mol Pharm; 2023 Jun; 20(6):3140-3149. PubMed ID: 37183369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of solubility product in a model condensate reveals the interplay of small oligomerization and self-association.
    Chattaraj A; Baltaci Z; Mayer BJ; Loew LM; Ditlev JA
    bioRxiv; 2024 Jan; ():. PubMed ID: 38328089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics.
    Chan KWY; Navi M; Kieda J; Moran T; Hammers D; Lee S; Tsai SSH
    Lab Chip; 2022 Jul; 22(14):2647-2656. PubMed ID: 35616128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.