These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34236318)

  • 21. Programmable and Chemically Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation.
    Deng J; Walther A
    Chem; 2020 Dec; 6(12):3329-3343. PubMed ID: 35252623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crowding-induced phase separation and gelling by co-condensation of PEG in NPM1-rRNA condensates.
    André AAM; Yewdall NA; Spruijt E
    Biophys J; 2023 Jan; 122(2):397-407. PubMed ID: 36463407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biological condensates form percolated networks with molecular motion properties distinctly different from dilute solutions.
    Shen Z; Jia B; Xu Y; Wessén J; Pal T; Chan HS; Du S; Zhang M
    Elife; 2023 Jun; 12():. PubMed ID: 37261897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding.
    Lin YH; Wu H; Jia B; Zhang M; Chan HS
    Biophys J; 2022 Jan; 121(1):157-171. PubMed ID: 34637756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications.
    Cinar H; Fetahaj Z; Cinar S; Vernon RM; Chan HS; Winter RHA
    Chemistry; 2019 Oct; 25(57):13049-13069. PubMed ID: 31237369
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlled and orthogonal partitioning of large particles into biomolecular condensates.
    Kelley FM; Ani A; Pinlac EG; Linders B; Favetta B; Barai M; Ma Y; Singh A; Dignon GL; Gu Y; Schuster BS
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleation of Biomolecular Condensates from Finite-Sized Simulations.
    Li L; Paloni M; Finney AR; Barducci A; Salvalaglio M
    J Phys Chem Lett; 2023 Feb; 14(7):1748-1755. PubMed ID: 36758221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of Data from Liquid-Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers.
    Farahi N; Lazar T; Wodak SJ; Tompa P; Pancsa R
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of charge asymmetry on the liquid-liquid phase separation of polyampholytes and their condensate properties.
    An Y; Gao T; Wang T; Zhang D; Bharti B
    Soft Matter; 2024 Aug; 20(31):6150-6159. PubMed ID: 39044475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding the physical principles of two-component biomolecular phase separation.
    Zhang Y; Xu B; Weiner BG; Meir Y; Wingreen NS
    Elife; 2021 Mar; 10():. PubMed ID: 33704061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size Scaling of Condensates in Multicomponent Phase Separation.
    Chen F; Li X; Guo W; Wang Y; Guo M; Shum HC
    J Am Chem Soc; 2024 Jun; 146(23):16000-16009. PubMed ID: 38809420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of polymer length in liquid-liquid phase separation.
    Valdes-Garcia G; Gamage K; Smith C; Martirosova K; Feig M; Lapidus LJ
    Cell Rep Phys Sci; 2023 May; 4(5):. PubMed ID: 37325682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomolecular Condensates Can Enhance Pathological RNA Clustering.
    Mahendran TS; Wadsworth GM; Singh A; Banerjee PR
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomolecular condensates can enhance pathological RNA clustering.
    Banerjee P; Mahendran TS; Wadsworth G; Singh A
    Res Sq; 2024 Jul; ():. PubMed ID: 39070659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.