BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34236336)

  • 1. Real-Time Respiratory Tumor Motion Prediction Based on a Temporal Convolutional Neural Network: Prediction Model Development Study.
    Chang P; Dang J; Dai J; Sun W
    J Med Internet Res; 2021 Aug; 23(8):e27235. PubMed ID: 34236336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LGEANet: LSTM-global temporal convolution-external attention network for respiratory motion prediction.
    Zhang K; Yu J; Liu J; Li Q; Jin S; Su Z; Xu X; Dai Z; Wang X; Zhang H
    Med Phys; 2023 Apr; 50(4):1975-1989. PubMed ID: 36688628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time liver tracking algorithm based on LSTM and SVR networks for use in surface-guided radiation therapy.
    Wang G; Li Z; Li G; Dai G; Xiao Q; Bai L; He Y; Liu Y; Bai S
    Radiat Oncol; 2021 Jan; 16(1):13. PubMed ID: 33446245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards real-time respiratory motion prediction based on long short-term memory neural networks.
    Lin H; Shi C; Wang B; Chan MF; Tang X; Ji W
    Phys Med Biol; 2019 Apr; 64(8):085010. PubMed ID: 30917344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time prediction of tumor motion using a dynamic neural network.
    Mafi M; Moghadam SM
    Med Biol Eng Comput; 2020 Mar; 58(3):529-539. PubMed ID: 31916074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of Intrafraction and Interfraction Tumor Motion Amplitude and Prediction Error for Different Liver Tumor Trajectories in Cyberknife Synchrony Tracking.
    Zhang J; Wang L; Li X; Huang M; Xu B
    Int J Radiat Oncol Biol Phys; 2021 Apr; 109(5):1588-1605. PubMed ID: 33227440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory motion prediction based on deep artificial neural networks in CyberKnife system: A comparative study.
    Samadi Miandoab P; Saramad S; Setayeshi S
    J Appl Clin Med Phys; 2023 Mar; 24(3):e13854. PubMed ID: 36457192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.
    Teo TP; Ahmed SB; Kawalec P; Alayoubi N; Bruce N; Lyn E; Pistorius S
    Med Phys; 2018 Feb; 45(2):830-845. PubMed ID: 29244902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting real-time 3D deformation field maps (DFM) based on volumetric cine MRI (VC-MRI) and artificial neural networks for on-board 4D target tracking: a feasibility study.
    Pham J; Harris W; Sun W; Yang Z; Yin FF; Ren L
    Phys Med Biol; 2019 Aug; 64(16):165016. PubMed ID: 31344693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the accuracy of a moving average algorithm for target tracking during radiation therapy treatment delivery.
    George R; Suh Y; Murphy M; Williamson J; Weiss E; Keall P
    Med Phys; 2008 Jun; 35(6):2356-65. PubMed ID: 18649469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using an external surrogate for predictor model training in real-time motion management of lung tumors.
    Rottmann J; Berbeco R
    Med Phys; 2014 Dec; 41(12):121706. PubMed ID: 25471953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical aspects of real time positron emission tracking for gated radiotherapy.
    Chamberland M; McEwen MR; Xu T
    Med Phys; 2016 Feb; 43(2):783-95. PubMed ID: 26843241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting respiratory motion using a novel patient specific dual deep recurrent neural networks.
    Yoganathan SA; Paloor S; Torfeh T; Aouadi S; Hammoud R; Al-Hammadi N
    Biomed Phys Eng Express; 2022 Sep; 8(6):. PubMed ID: 36130525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time respiratory motion prediction using photonic reservoir computing.
    Liang Z; Zhang M; Shi C; Huang ZR
    Sci Rep; 2023 Apr; 13(1):5718. PubMed ID: 37029184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the position of external markers using a recurrent neural network trained with unbiased online recurrent optimization for safe lung cancer radiotherapy.
    Pohl M; Uesaka M; Takahashi H; Demachi K; Bhusal Chhatkuli R
    Comput Methods Programs Biomed; 2022 Jul; 222():106908. PubMed ID: 35716534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of respiratory phase shifts on motion-tracking accuracy of the CyberKnife Synchrony™ Respiratory Tracking System.
    Akino Y; Shiomi H; Sumida I; Isohashi F; Seo Y; Suzuki O; Tamari K; Otani K; Higashinaka N; Hayashida M; Mabuchi N; Ogawa K
    Med Phys; 2019 Sep; 46(9):3757-3766. PubMed ID: 30943311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention-aware fully convolutional neural network with convolutional long short-term memory network for ultrasound-based motion tracking.
    Huang P; Yu G; Lu H; Liu D; Xing L; Yin Y; Kovalchuk N; Xing L; Li D
    Med Phys; 2019 May; 46(5):2275-2285. PubMed ID: 30912590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery.
    Vedam S; Docef A; Fix M; Murphy M; Keall P
    Med Phys; 2005 Jun; 32(6):1607-20. PubMed ID: 16013720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical Note: 3D localization of lung tumors on cone beam CT projections via a convolutional recurrent neural network.
    Wang C; Hunt M; Zhang L; Rimner A; Yorke E; Lovelock M; Li X; Li T; Mageras G; Zhang P
    Med Phys; 2020 Mar; 47(3):1161-1166. PubMed ID: 31899807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical applicability of deep learning-based respiratory signal prediction models for four-dimensional radiation therapy.
    Jeong S; Cheon W; Cho S; Han Y
    PLoS One; 2022; 17(10):e0275719. PubMed ID: 36256632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.