These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 34236666)

  • 41. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Protein subcellular localization based on deep image features and criterion learning strategy.
    Su R; He L; Liu T; Liu X; Wei L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33320936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches.
    Sahu SS; Loaiza CD; Kaundal R
    AoB Plants; 2020 Jun; 12(3):plz068. PubMed ID: 32528639
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of LncRNA Subcellular Localization with Deep Learning from Sequence Features.
    Gudenas BL; Wang L
    Sci Rep; 2018 Nov; 8(1):16385. PubMed ID: 30401954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A survey on protein-DNA-binding sites in computational biology.
    Zhang Y; Bao W; Cao Y; Cong H; Chen B; Chen Y
    Brief Funct Genomics; 2022 Sep; 21(5):357-375. PubMed ID: 35652477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning.
    Cai J; Wang T; Deng X; Tang L; Liu L
    BMC Genomics; 2023 Jan; 24(1):52. PubMed ID: 36709266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images.
    Long W; Yang Y; Shen HB
    Bioinformatics; 2020 Apr; 36(7):2244-2250. PubMed ID: 31804670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein sequence information extraction and subcellular localization prediction with gapped k-Mer method.
    Yao YH; Lv YP; Li L; Xu HM; Ji BB; Chen J; Li C; Liao B; Nan XY
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):719. PubMed ID: 31888447
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GHS-NET a generic hybridized shallow neural network for multi-label biomedical text classification.
    Ibrahim MA; Ghani Khan MU; Mehmood F; Asim MN; Mahmood W
    J Biomed Inform; 2021 Apr; 116():103699. PubMed ID: 33601013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of three novel feature extraction methods on the prediction of the subcellular localization of multi-site virus proteins.
    Wang L; Zhao Y; Chen Y; Wang D
    Bioengineered; 2018 Jan; 9(1):196-202. PubMed ID: 28886267
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y; Ye C; Peng PY; Zhai HX; Ahmad I; Xia C; Wu YZ; Zhang YH
    BMC Bioinformatics; 2022 Aug; 23(1):318. PubMed ID: 35927611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers.
    Ryu JY; Kim HU; Lee SY
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13996-14001. PubMed ID: 31221760
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive framework for advanced protein classification and function prediction using synergistic approaches: Integrating bispectral analysis, machine learning, and deep learning.
    Alquran H; Al Fahoum A; Zyout A; Abu Qasmieh I
    PLoS One; 2023; 18(12):e0295805. PubMed ID: 38096313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep learning architectures for multi-label classification of intelligent health risk prediction.
    Maxwell A; Li R; Yang B; Weng H; Ou A; Hong H; Zhou Z; Gong P; Zhang C
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):523. PubMed ID: 29297288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep Learning Assisted Neonatal Cry Classification
    K A; Vincent PMDR; Srinivasan K; Chang CY
    Front Public Health; 2021; 9():670352. PubMed ID: 34178926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.