These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34236675)

  • 1. Analysis of the Secondary Metabolism in Magnaporthe oryzae.
    Skellam E
    Methods Mol Biol; 2021; 2356():41-56. PubMed ID: 34236675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite profiling reveals overexpression of the global regulator, MoLAEA leads to increased synthesis of metabolites in Magnaporthe oryzae.
    Subba P; Saha P; Karthikkeyan G; Biswas M; Prasad TSK; Roy-Barman S
    J Appl Microbiol; 2022 May; 132(5):3825-3838. PubMed ID: 35261134
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Saha P; Ghosh S; Roy-Barman S
    mSphere; 2020 Apr; 5(2):. PubMed ID: 32238572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol potential of Burkholderia sp. BV6 against the rice blast fungus Magnaporthe oryzae.
    Xue L; Yang C; Jihong W; Lin L; Yuqiang Z; Zhitong J; Yanxin W; Zhoukun L; Lei F; Zhongli C
    J Appl Microbiol; 2022 Aug; 133(2):883-897. PubMed ID: 35491748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis and biological function of secondary metabolites of the rice blast fungus Pyricularia oryzae.
    Motoyama T; Yun CS; Osada H
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34379774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary Metabolites of the Rice Blast Fungus
    Motoyama T
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33218033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum.
    Maeda K; Izawa M; Nakajima Y; Jin Q; Hirose T; Nakamura T; Koshino H; Kanamaru K; Ohsato S; Kamakura T; Kobayashi T; Yoshida M; Kimura M
    Lett Appl Microbiol; 2017 Nov; 65(5):446-452. PubMed ID: 28862744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistic Mechanism Analysis of
    Su L; Zhang J; Fan J; Li D; Zhao M; Wang Y; Pan H; Zhao L; Zhang X
    J Agric Food Chem; 2024 Sep; 72(36):19657-19666. PubMed ID: 39190007
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparative analysis of secondary metabolite gene clusters in different strains of Magnaporthe oryzae.
    Saha P; Sarkar A; Sabnam N; Shirke MD; Mahesh HB; Nikhil A; Rajamani A; Gowda M; Roy-Barman S
    FEMS Microbiol Lett; 2021 Jan; 368(1):. PubMed ID: 33355334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Detection of Magnaporthe oryzae from Rice Seeds.
    Chadha S
    Methods Mol Biol; 2021; 2356():187-197. PubMed ID: 34236687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnaporthe oryzae systemic defense trigger 1 (MoSDT1)-mediated metabolites regulate defense response in Rice.
    Duan G; Li C; Liu Y; Ma X; Luo Q; Yang J
    BMC Plant Biol; 2021 Jan; 21(1):40. PubMed ID: 33430779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological and biorational management of blast diseases in cereals caused by
    Chakraborty M; Mahmud NU; Ullah C; Rahman M; Islam T
    Crit Rev Biotechnol; 2021 Nov; 41(7):994-1022. PubMed ID: 34006149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae.
    Fernandez J; Lopez V; Kinch L; Pfeifer MA; Gray H; Garcia N; Grishin NV; Khang CH; Orth K
    mBio; 2021 Feb; 12(1):. PubMed ID: 33563831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods to Study Autophagocytosis in Magnaporthe oryzae.
    Li L; Zhu XM; Liu XH; Lin FC
    Methods Mol Biol; 2021; 2356():173-185. PubMed ID: 34236686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of camptothecin on the rice blast fungus Magnaporthe oryzae.
    Xu S; Wang B; Li L; Zhou Q; Tian M; Zhao X; Peng J; Liu F; Chen Y; Xu Y; Feng X
    Pestic Biochem Physiol; 2020 Feb; 163():108-116. PubMed ID: 31973846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal, Circadian , and Photomorphogenic Analyses in Magnaporthe oryzae.
    Griffin C; Littlejohn GR
    Methods Mol Biol; 2021; 2356():161-172. PubMed ID: 34236685
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Deng S; Sun W; Dong L; Cui G; Deng YZ
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736
    [No Abstract]   [Full Text] [Related]  

  • 18. Emergence of a hybrid PKS-NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae.
    Zhong Z; Lin L; Zheng H; Bao J; Chen M; Zhang L; Tang W; Ebbole DJ; Wang Z
    Environ Microbiol; 2020 Jul; 22(7):2709-2723. PubMed ID: 32216010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced ultraviolet-B radiation alleviates structural damages on rice leaf caused by Magnaporthe oryzae infection.
    He Y; Li H; Wu J; Li X; Zu Y; Zhan F; Li Y
    Protoplasma; 2024 Jan; 261(1):161-171. PubMed ID: 37428235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equol, a Clinically Important Metabolite, Inhibits the Development and Pathogenicity of Magnaporthe oryzae, the Causal Agent of Rice Blast Disease.
    Wang J; Li L; Yin Y; Gu Z; Chai R; Wang Y; Sun G
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29064450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.