BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34236706)

  • 1. Decomposing decomposition: isolating direct effects of temperature from other drivers of detrital processing.
    Wilmot OJ; Hood JM; Huryn AD; Benstead JP
    Ecology; 2021 Oct; 102(10):e03467. PubMed ID: 34236706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams.
    Martínez A; Pérez J; Molinero J; Sagarduy M; Pozo J
    Sci Total Environ; 2015 Jan; 503-504():251-7. PubMed ID: 24962591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters.
    Robbins CJ; Norman BC; Halvorson HM; Manning DWP; Bastias E; Biasi C; Dodd AK; Eckert RA; Gossiaux A; Jabiol J; Mehring AS; Pastor A
    Ecology; 2023 Aug; 104(8):e4114. PubMed ID: 37260293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf litter breakdown along an elevational gradient in Australian alpine streams.
    Werry LP; Bundschuh M; Mitrovic SM; Lim RP; Kefford BJ
    Ecol Evol; 2022 Oct; 12(10):e9433. PubMed ID: 36311402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The breakdown and decomposition of sweet chestnut (Castanea sativa Mill.) and beech (Fagus sylvatica L.) leaf litter in two deciduous woodland soils : I. Breakdown, leaching and decomposition.
    Anderson JM
    Oecologia; 1973 Sep; 12(3):251-274. PubMed ID: 28308230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drought and detritivores determine leaf litter decomposition in calcareous streams of the Ebro catchment (Spain).
    Monroy S; Menéndez M; Basaguren A; Pérez J; Elosegi A; Pozo J
    Sci Total Environ; 2016 Dec; 573():1450-1459. PubMed ID: 27503627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream.
    Rincón J; Covich A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():143-54. PubMed ID: 25189075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates.
    Manning DW; Rosemond AD; Kominoski JS; Gulis V; Benstead JP; Maerz JC
    Ecology; 2015 Aug; 96(8):2214-24. PubMed ID: 26405746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crayfish impact desert river ecosystem function and litter-dwelling invertebrate communities through association with novel detrital resources.
    Moody EK; Sabo JL
    PLoS One; 2013; 8(5):e63274. PubMed ID: 23667600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riparian plant species loss alters trophic dynamics in detritus-based stream ecosystems.
    Lecerf A; Dobson M; Dang CK; Chauvet E
    Oecologia; 2005 Dec; 146(3):432-42. PubMed ID: 16096846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.
    Follstad Shah JJ; Kominoski JS; Ardón M; Dodds WK; Gessner MO; Griffiths NA; Hawkins CP; Johnson SL; Lecerf A; LeRoy CJ; Manning DWP; Rosemond AD; Sinsabaugh RL; Swan CM; Webster JR; Zeglin LH
    Glob Chang Biol; 2017 Aug; 23(8):3064-3075. PubMed ID: 28039909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land use effects on leaf litter breakdown in low-order streams draining a rapidly developing tropical watershed in Puerto Rico.
    Torres PJ; Ramírez A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():129-42. PubMed ID: 25189074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Leaf-litter breakdown as a tool to assess the functional integrity of high Andean streams of Southern Ecuador].
    Rincón J; Merchán D; Sparer A; Rojas D; Zarate E
    Rev Biol Trop; 2017 Mar; 65(1):321-34. PubMed ID: 29466647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.
    Kominoski JS; Marczak LB; Richardson JS
    Ecology; 2011 Jan; 92(1):151-9. PubMed ID: 21560685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Litter decomposition across multiple spatial scales in stream networks.
    Tiegs SD; Akinwole PO; Gessner MO
    Oecologia; 2009 Aug; 161(2):343-51. PubMed ID: 19504124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenological response of a key ecosystem function to biological invasion.
    Alp M; Cucherousset J; Buoro M; Lecerf A
    Ecol Lett; 2016 May; 19(5):519-27. PubMed ID: 26931804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of metal pollution from mining on litter decomposition in streams.
    Run L; Yueting P; Siyuan C; Jiachen S; Yunchao L; Shuiyun Z; Xingjun T
    Environ Pollut; 2022 Mar; 296():118698. PubMed ID: 34929208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Relationship between leaf litter decomposition and colonization of benthic macroinvertebrates during early frost period in a headwater stream in the Changbai Mountains, Northeast China].
    Wang L; Yang HJ; Li L; Nan XF; Zhang ZX; Li K
    Ying Yong Sheng Tai Xue Bao; 2017 Nov; 28(11):3775-3783. PubMed ID: 29692122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.