These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34236759)

  • 1. Factors influencing distributional shifts and abundance at the range core of a climate-sensitive mammal.
    Billman PD; Beever EA; McWethy DB; Thurman LL; Wilson KC
    Glob Chang Biol; 2021 Oct; 27(19):4498-4515. PubMed ID: 34236759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects.
    Yandow LH; Chalfoun AD; Doak DF
    PLoS One; 2015; 10(8):e0131082. PubMed ID: 26244851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing alternative models of climate-mediated extirpations.
    Beever EA; Ray C; Mote PW; Wilkening JL
    Ecol Appl; 2010 Jan; 20(1):164-78. PubMed ID: 20349838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps).
    Erb LP; Ray C; Guralnick R
    Ecology; 2011 Sep; 92(9):1730-5. PubMed ID: 21939069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictors of Current and Longer-Term Patterns of Abundance of American Pikas (Ochotona princeps) across a Leading-Edge Protected Area.
    Moyer-Horner L; Beever EA; Johnson DH; Biel M; Belt J
    PLoS One; 2016; 11(11):e0167051. PubMed ID: 27902732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The idiosyncrasies of place: geographic variation in the climate-distribution relationships of the American pika.
    Jeffress MR; Rodhouse TJ; Ray C; Wolff S; Epps CW
    Ecol Appl; 2013 Jun; 23(4):864-78. PubMed ID: 23865236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.
    Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR
    Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA.
    Stewart JAE; Wright DH; Heckman KA
    PLoS One; 2017; 12(8):e0181834. PubMed ID: 28854268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding relationships among abundance, extirpation, and climate at ecoregional scales.
    Beever EA; Dobrowski SZ; Long J; Mynsberge AR; Piekielek NB
    Ecology; 2013 Jul; 94(7):1563-71. PubMed ID: 23951716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates.
    Mathewson PD; Moyer-Horner L; Beever EA; Briscoe NJ; Kearney M; Yahn JM; Porter WP
    Glob Chang Biol; 2017 Mar; 23(3):1048-1064. PubMed ID: 27500587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of pika population density vs. occupancy in the Southern Rocky Mountains.
    Erb LP; Ray C; Guralnick R
    Ecol Appl; 2014 Apr; 24(3):429-35. PubMed ID: 24834730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of biologically relevant microclimates in habitat suitability assessments.
    Varner J; Dearing MD
    PLoS One; 2014; 9(8):e104648. PubMed ID: 25115894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological consequences of anomalies in atmospheric moisture and snowpack.
    Johnston AN; Bruggeman JE; Beers AT; Beever EA; Christophersen RG; Ransom JI
    Ecology; 2019 Apr; 100(4):e02638. PubMed ID: 30710338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.
    Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D
    Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal.
    Waterhouse MD; Erb LP; Beever EA; Russello MA
    Mol Ecol; 2018 Jun; 27(11):2512-2528. PubMed ID: 29693300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).
    Wilkening JL; Ray C; Varner J
    PLoS One; 2015; 10(3):e0119327. PubMed ID: 25803587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expertly validated models and phylogenetically-controlled analysis suggests responses to climate change are related to species traits in the order lagomorpha.
    Leach K; Kelly R; Cameron A; Montgomery WI; Reid N
    PLoS One; 2015; 10(4):e0122267. PubMed ID: 25874407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current analogues of future climate indicate the likely response of a sensitive montane tropical avifauna to a warming world.
    Anderson AS; Storlie CJ; Shoo LP; Pearson RG; Williams SE
    PLoS One; 2013; 8(7):e69393. PubMed ID: 23936005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling behavioral thermoregulation in a climate change sentinel.
    Moyer-Horner L; Mathewson PD; Jones GM; Kearney MR; Porter WP
    Ecol Evol; 2015 Dec; 5(24):5810-22. PubMed ID: 26811756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in subsurface thermal characteristics of microrefuges used by range core and peripheral populations of the American pika (
    Rodhouse TJ; Hovland M; Jeffress MR
    Ecol Evol; 2017 Mar; 7(5):1514-1526. PubMed ID: 28261461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.