BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34236857)

  • 1. Wireless Addressable Cortical Microstimulators Powered by Near-Infrared Harvesting.
    Lee AH; Lee J; Jang J; Nurmikko A; Song YK
    ACS Sens; 2021 Jul; 6(7):2728-2737. PubMed ID: 34236857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Distributed Wireless Network of Implantable Sub-mm Cortical Microstimulators for Brain-Computer Interfaces.
    Laiwalla F; Lee J; Lee AH; Mok E; Leung V; Shellhammer S; Song YK; Larson L; Nurmikko A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6876-6879. PubMed ID: 31947420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved selectivity from a wavelength addressable device for wireless stimulation of neural tissue.
    Seymour EÇ; Freedman DS; Gökkavas M; Ozbay E; Sahin M; Unlü MS
    Front Neuroeng; 2014; 7():5. PubMed ID: 24600390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents.
    García-Moreno A; Comerma-Montells A; Tudela-Pi M; Minguillon J; Becerra-Fajardo L; Ivorra A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041421
    [No Abstract]   [Full Text] [Related]  

  • 5. Floating light-activated microelectrical stimulators tested in the rat spinal cord.
    Abdo A; Sahin M; Freedman DS; Cevik E; Spuhler PS; Unlu MS
    J Neural Eng; 2011 Oct; 8(5):056012. PubMed ID: 21914931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile On-Chip Programming of Circuit Hardware for Wearable and Implantable Biomedical Microdevices.
    Lee AH; Lee J; Leung V; Nurmikko A
    Adv Sci (Weinh); 2023 Dec; 10(36):e2306111. PubMed ID: 37904645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ultrasonically Powered Wireless System for In Vivo Gastric Slow-Wave Recording.
    Meng M; Graybill P; Ramos RL; Javan-Khoshkholgh A; Farajidavar A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7064-7067. PubMed ID: 31947464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Demonstration of Addressable Microstimulators Powered by Rectification of Epidermically Applied Currents for Miniaturized Neuroprostheses.
    Becerra-Fajardo L; Ivorra A
    PLoS One; 2015; 10(7):e0131666. PubMed ID: 26147771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless microstimulators for neural prosthetics.
    Sahin M; Pikov V
    Crit Rev Biomed Eng; 2011; 39(1):63-77. PubMed ID: 21488815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rodent wearable ultrasound system for wireless neural recording.
    Piech DK; Kay JE; Boser BE; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():221-225. PubMed ID: 29059850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Sub-millimeter, Inductively Powered Neural Stimulator.
    Freeman DK; O'Brien JM; Kumar P; Daniels B; Irion RA; Shraytah L; Ingersoll BK; Magyar AP; Czarnecki A; Wheeler J; Coppeta JR; Abban MP; Gatzke R; Fried SI; Lee SW; Duwel AE; Bernstein JJ; Widge AS; Hernandez-Reynoso A; Kanneganti A; Romero-Ortega MI; Cogan SF
    Front Neurosci; 2017; 11():659. PubMed ID: 29230164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CMOS-Based Neural Interface Device for Optogenetics.
    Tokuda T; Haruta M; Sasagawa K; Ohta J
    Adv Exp Med Biol; 2021; 1293():585-600. PubMed ID: 33398844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators.
    Ersen A; Sahin M
    J Biomed Opt; 2017 May; 22(5):55005. PubMed ID: 28500857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier.
    Lyu H; Wang J; La JH; Chung JM; Babakhani A
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1131-1143. PubMed ID: 30040661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bridging the"Last Millimeter" Gap of Brain-Machine Interfaces via Near-Infrared Wireless Power Transfer and Data Communications.
    Moon E; Barrow M; Lim J; Lee J; Nason SR; Costello J; Kim HS; Chestek C; Jang T; Blaauw D; Phillips JD
    ACS Photonics; 2021 May; 8(5):1430-1438. PubMed ID: 34368396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device.
    Jia Y; Gong Y; Weber A; Li W; Ghovanloo M
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32630557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.