These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34236857)

  • 41. Delivering optical power to subcutaneous implanted devices.
    Ayazian S; Hassibi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2874-7. PubMed ID: 22254941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Columnar transmitter based wireless power delivery system for implantable device in freely moving animals.
    Eom K; Jeong J; Lee TH; Lee SE; Jun SB; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1859-62. PubMed ID: 24110073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Scalable and Low Stress Post-CMOS Processing Technique for Implantable Microsensors.
    Lee AH; Lee J; Laiwalla F; Leung V; Huang J; Nurmikko A; Song YK
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33028005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker.
    Shuenn-Yuh Lee ; Su MY; Ming-Chun Liang ; You-Yin Chen ; Cheng-Han Hsieh ; Chung-Min Yang ; Hsin-Yi Lai ; Jou-Wei Lin ; Qiang Fang
    IEEE Trans Biomed Circuits Syst; 2011 Dec; 5(6):511-22. PubMed ID: 23852549
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved Charge Pump Design and Ex Vivo Experimental Validation of CMOS 256-Pixel Photovoltaic-Powered Subretinal Prosthetic Chip.
    Kuo PH; Wong OY; Tzeng CK; Wu PW; Chiao CC; Chen PH; Chen PC; Tsai YC; Chu FL; Ohta J; Tokuda T; Noda T; Wu CY
    IEEE Trans Biomed Eng; 2020 May; 67(5):1490-1504. PubMed ID: 31494538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A 24 Vpp compliant biphasic stimulator for inductively powered animal behavior studies.
    Nag S; Sharma D; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3242-5. PubMed ID: 24110419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-Implantable Devices.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 May; 64(5):2432-2437. PubMed ID: 29056754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Micropower circuits for bidirectional wireless telemetry in neural recording applications.
    Neihart NM; Harrison RR
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1950-9. PubMed ID: 16285399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Energy-Efficient Implantable-Neural-Stimulator System with Wireless Charging and Dynamic Voltage Output.
    Fu X; Mai S; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3835-3839. PubMed ID: 31946710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications.
    Mishu MK; Rokonuzzaman M; Pasupuleti J; Shakeri M; Rahman KS; Binzaid S; Tiong SK; Amin N
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33917665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chip-Scale Coils for Millimeter-Sized Bio-Implants.
    Feng P; Yeon P; Cheng Y; Ghovanloo M; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2018 Oct; 12(5):1088-1099. PubMed ID: 30040662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A smart mobile pouch as a biomechanical energy harvester towards self-powered smart wireless power transfer applications.
    Chandrasekhar A; Alluri NR; Sudhakaran MSP; Mok YS; Kim SJ
    Nanoscale; 2017 Jul; 9(28):9818-9824. PubMed ID: 28485449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A 10-Bit 300 kS/s Reference-Voltage Regulator Free SAR ADC for Wireless-Powered Implantable Medical Devices.
    Yang Y; Zhou J; Liu X; Goh WL
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970814
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diamond encapsulated photovoltaics for transdermal power delivery.
    Ahnood A; Fox KE; Apollo NV; Lohrmann A; Garrett DJ; Nayagam DA; Karle T; Stacey A; Abberton KM; Morrison WA; Blakers A; Prawer S
    Biosens Bioelectron; 2016 Mar; 77():589-97. PubMed ID: 26476599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy harvesting for human wearable and implantable bio-sensors.
    Mitcheson PD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3432-6. PubMed ID: 21097254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Implantable multichannel wireless electromyography for prosthesis control.
    McDonnall D; Hiatt S; Smith C; Guillory KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1350-3. PubMed ID: 23366149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An implantable power supply with an optically rechargeable lithium battery.
    Goto K; Nakagawa T; Nakamura O; Kawata S
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):830-3. PubMed ID: 11442295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A small, light-weight, low-power, multichannel wireless neural recording microsystem.
    Borna A; Marzullob T; Gage G; Najafi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5413-6. PubMed ID: 19963909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.