These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34236935)

  • 21. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid).
    Huang B; Qin P; Xu Z; Zhu R; Meng Y
    Bioresour Technol; 2011 Feb; 102(3):3595-8. PubMed ID: 21071211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly-(γ-glutamic acid) Production and Optimization from Agro-Industrial Bioresources as Renewable Substrates by
    Song DY; Reddy LV; Charalampopoulos D; Wee YJ
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31756993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis.
    Ju WT; Song YS; Jung WJ; Park RD
    Biotechnol Lett; 2014 Nov; 36(11):2319-24. PubMed ID: 25048237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28.
    Zeng W; Chen G; Wang Q; Zheng S; Shu L; Liang Z
    Bioresour Technol; 2014 Mar; 155():104-10. PubMed ID: 24434700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.
    Tang B; Xu H; Xu Z; Xu C; Xu Z; Lei P; Qiu Y; Liang J; Feng X
    Bioresour Technol; 2015 Apr; 181():351-4. PubMed ID: 25670398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient recovery of gamma-poly (glutamic acid) from highly viscous culture broth.
    Do JH; Chang HN; Lee SY
    Biotechnol Bioeng; 2001 Nov; 76(3):219-23. PubMed ID: 11668457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-sterilized fermentative co-production of poly(γ-glutamic acid) and fibrinolytic enzyme by a thermophilic Bacillus subtilis GXA-28.
    Zeng W; Li W; Shu L; Yi J; Chen G; Liang Z
    Bioresour Technol; 2013 Aug; 142():697-700. PubMed ID: 23725975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The statistically optimized production of poly(gamma-glutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3.
    Jeong JH; Kim JN; Wee YJ; Ryu HW
    Bioresour Technol; 2010 Jun; 101(12):4533-9. PubMed ID: 20153177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of poly-γ-glutamic acid biosynthesis in a moving bed biofilm reactor by Bacillus subtilis NX-2.
    Jiang Y; Tang B; Xu Z; Liu K; Xu Z; Feng X; Xu H
    Bioresour Technol; 2016 Oct; 218():360-6. PubMed ID: 27376835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis stain.
    Li J; Chen S; Fu J; Xie J; Ju J; Yu B; Wang L
    Microb Cell Fact; 2022 Jul; 21(1):140. PubMed ID: 35842664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates.
    Yong X; Raza W; Yu G; Ran W; Shen Q; Yang X
    Bioresour Technol; 2011 Aug; 102(16):7548-54. PubMed ID: 21665467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling.
    Zeng W; Chen G; Wu H; Wang J; Liu Y; Guo Y; Liang Z
    Microb Biotechnol; 2016 Nov; 9(6):824-833. PubMed ID: 27562078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production and physicochemical characterization of bacterial poly gamma- (glutamic acid) to investigate its performance on enhanced oil recovery.
    Azarhava H; Bajestani MI; Jafari A; Vakilchap F; Mousavi SM
    Int J Biol Macromol; 2020 Mar; 147():1204-1212. PubMed ID: 31739030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Online measurement of the viscosity in shake flasks enables monitoring of γ-PGA production in depolymerase knockout mutants of Bacillus subtilis with the phosphate-starvation inducible promoter P
    Hoffmann K; Halmschlag B; Briel S; Sieben M; Putri S; Fukusaki E; Blank LM; Büchs J
    Biotechnol Prog; 2023 Jan; 39(1):e3293. PubMed ID: 36081345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain.
    Yeh CM; Wang JP; Lo SC; Chan WC; Lin MY
    Biotechnol Prog; 2010; 26(4):1001-7. PubMed ID: 20564357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid.
    Poo H; Park C; Kwak MS; Choi DY; Hong SP; Lee IH; Lim YT; Choi YK; Bae SR; Uyama H; Kim CJ; Sung MH
    Chem Biodivers; 2010 Jun; 7(6):1555-62. PubMed ID: 20564573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasible protein aggregation of phosphorylated poly-γ-glutamic acid derivative from Bacillus subtilis (natto).
    Kurita O; Sago T; Umetani K; Kokean Y; Yamaoka C; Takahashi N; Iwamoto H
    Int J Biol Macromol; 2017 Oct; 103():484-492. PubMed ID: 28527993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 in solid state fermentation.
    Bajaj IB; Lele SS; Singhal RS
    J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1581-6. PubMed ID: 18654808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel Method for the selective recovery and purification of gamma-polyglutamic acid from Bacillus licheniformis fermentation broth.
    Manocha B; Margaritis A
    Biotechnol Prog; 2010; 26(3):734-42. PubMed ID: 20063385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of poly-γ-glutamic acid on hydration and structure of wheat gluten.
    Xie X; Wu X; Shen Y; Song M; Xu C; Zhang B; Aziz U; Xu X
    J Food Sci; 2020 Oct; 85(10):3214-3219. PubMed ID: 32857865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.