These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34236958)

  • 1. Induced expression of the
    Ghosh P; Barman A; Das Gupta SK
    Microbiology (Reading); 2021 Jul; 167(7):. PubMed ID: 34236958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system.
    Hasan MR; Rahman M; Jaques S; Purwantini E; Daniels L
    J Biol Chem; 2010 Jun; 285(25):19135-44. PubMed ID: 20075070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the
    Ko EM; Kim JY; Lee S; Kim S; Hwang J; Oh JI
    J Bacteriol; 2021 Nov; 203(23):e0040221. PubMed ID: 34516281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress.
    Sandoval JM; Arenas FA; Vásquez CC
    PLoS One; 2011; 6(9):e25573. PubMed ID: 21984934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MSMEG_5684 down-regulation in Mycobacterium smegmatis affects its permeability, survival under stress and persistence.
    Keshari D; Singh KS; Sharma R; Yadav S; Singh SK
    Tuberculosis (Edinb); 2017 Mar; 103():61-70. PubMed ID: 28237035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis.
    Jin Y; Xin Y; Zhang W; Ma Y
    FEMS Microbiol Lett; 2010 Sep; 310(1):54-61. PubMed ID: 20637039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MnoSR Is a Bona Fide Two-Component System Involved in Methylotrophic Metabolism in Mycobacterium smegmatis.
    Dubey AA; Jain V
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31003982
    [No Abstract]   [Full Text] [Related]  

  • 8. [Gene function of glpX in mycobacterium].
    Wang X; Ren D; Gao Q; Niu C
    Wei Sheng Wu Xue Bao; 2014 Mar; 54(3):285-91. PubMed ID: 24984520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a Mycobacterium smegmatis uvrA mutant impaired in dormancy induced by hypoxia and low carbon concentration.
    Cordone A; Audrain B; Calabrese I; Euphrasie D; Reyrat JM
    BMC Microbiol; 2011 Oct; 11():231. PubMed ID: 22008214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy.
    Kumar S; Matange N; Umapathy S; Visweswariah SS
    FEMS Microbiol Lett; 2015 Jan; 362(3):1-6. PubMed ID: 25673658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation.
    Moonira T; Chachra SS; Ford BE; Marin S; Alshawi A; Adam-Primus NS; Arden C; Al-Oanzi ZH; Foretz M; Viollet B; Cascante M; Agius L
    J Biol Chem; 2020 Mar; 295(10):3330-3346. PubMed ID: 31974165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat).
    Ma JF; Hager PW; Howell ML; Phibbs PV; Hassett DJ
    J Bacteriol; 1998 Apr; 180(7):1741-9. PubMed ID: 9537370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis.
    Dubey AA; Wani SR; Jain V
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29891642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86
    Shah BA; Kasarlawar ST; Phale PS
    Microbiol Spectr; 2022 Dec; 10(6):e0381822. PubMed ID: 36354357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of serine acetyltransferase from Mycobacterium smegmatis.
    Qiu J; Ma Y; Owusu L; Jiang T; Xin Y
    J Basic Microbiol; 2014 Jul; 54(7):670-7. PubMed ID: 24652708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production.
    Maleki S; Mærk M; Valla S; Ertesvåg H
    Appl Environ Microbiol; 2015 May; 81(10):3349-56. PubMed ID: 25746989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPSP Synthase-Depleted Cells Are Aromatic Amino Acid Auxotrophs in Mycobacterium smegmatis.
    Duque-Villegas MA; Abbadi BL; Romero PR; Matter LB; Galina L; Dalberto PF; Rodrigues-Junior VDS; Ducati RG; Roth CD; Rambo RS; de Souza EV; Perello MA; Morbidoni HR; Machado P; Basso LA; Bizarro CV
    Microbiol Spectr; 2021 Dec; 9(3):e0000921. PubMed ID: 34937164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lsr2 and Its Novel Paralogue Mediate the Adjustment of Mycobacterium smegmatis to Unfavorable Environmental Conditions.
    Kołodziej M; Łebkowski T; Płociński P; Hołówka J; Paściak M; Wojtaś B; Bury K; Konieczny I; Dziadek J; Zakrzewska-Czerwińska J
    mSphere; 2021 May; 6(3):. PubMed ID: 33980681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resuscitation-Promoting Factors Are Required for Mycobacterium smegmatis Biofilm Formation.
    Ealand C; Rimal B; Chang J; Mashigo L; Chengalroyen M; Mapela L; Beukes G; Machowski E; Kim SJ; Kana B
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29915116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis.
    Ahmed W; Menon S; Karthik PV; Nagaraja V
    Microbiology (Reading); 2015 Feb; 161(Pt 2):341-353. PubMed ID: 25516959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.