These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34237360)
1. The milk-derived lactoferrin inhibits V-ATPase activity by targeting its V1 domain. Santos-Pereira C; Rocha JF; Fernandes HS; Rodrigues LR; Côrte-Real M; Sousa SF Int J Biol Macromol; 2021 Sep; 186():54-70. PubMed ID: 34237360 [TBL] [Abstract][Full Text] [Related]
2. Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Pereira CS; Guedes JP; Gonçalves M; Loureiro L; Castro L; Gerós H; Rodrigues LR; Côrte-Real M Oncotarget; 2016 Sep; 7(38):62144-62158. PubMed ID: 27556694 [TBL] [Abstract][Full Text] [Related]
3. MgATP hydrolysis destabilizes the interaction between subunit H and yeast V Sharma S; Oot RA; Wilkens S J Biol Chem; 2018 Jul; 293(27):10718-10730. PubMed ID: 29754144 [TBL] [Abstract][Full Text] [Related]
4. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. Jefferies KC; Forgac M J Biol Chem; 2008 Feb; 283(8):4512-9. PubMed ID: 18156183 [TBL] [Abstract][Full Text] [Related]
5. Origin of asymmetry at the intersubunit interfaces of V1-ATPase from Thermus thermophilus. Nagamatsu Y; Takeda K; Kuranaga T; Numoto N; Miki K J Mol Biol; 2013 Aug; 425(15):2699-708. PubMed ID: 23639357 [TBL] [Abstract][Full Text] [Related]
6. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965 [TBL] [Abstract][Full Text] [Related]
7. Cysteine-mediated cross-linking indicates that subunit C of the V-ATPase is in close proximity to subunits E and G of the V1 domain and subunit a of the V0 domain. Inoue T; Forgac M J Biol Chem; 2005 Jul; 280(30):27896-903. PubMed ID: 15951435 [TBL] [Abstract][Full Text] [Related]
8. An affinity change model to elucidate the rotation mechanism of V Arai S; Maruyama S; Shiroishi M; Yamato I; Murata T Biochem Biophys Res Commun; 2020 Dec; 533(4):1413-1418. PubMed ID: 33097182 [TBL] [Abstract][Full Text] [Related]
9. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function. Lu M; Vergara S; Zhang L; Holliday LS; Aris J; Gluck SL J Biol Chem; 2002 Oct; 277(41):38409-15. PubMed ID: 12163484 [TBL] [Abstract][Full Text] [Related]
10. Proton translocation driven by ATP hydrolysis in V-ATPases. Kawasaki-Nishi S; Nishi T; Forgac M FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495 [TBL] [Abstract][Full Text] [Related]
11. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Santos-Pereira C; Andrés MT; Chaves SR; Fierro JF; Gerós H; Manon S; Rodrigues LR; Côrte-Real M Int J Biol Macromol; 2021 Feb; 171():343-357. PubMed ID: 33421469 [TBL] [Abstract][Full Text] [Related]
12. Structure and dynamics of rotary V Ueno H; Suzuki K; Murata T Cell Mol Life Sci; 2018 May; 75(10):1789-1802. PubMed ID: 29387903 [TBL] [Abstract][Full Text] [Related]
13. Chemomechanical Coupling in Hexameric Protein-Protein Interfaces Harnesses Energy within V-Type ATPases. Singharoy A; Chipot C; Moradi M; Schulten K J Am Chem Soc; 2017 Jan; 139(1):293-310. PubMed ID: 27936329 [TBL] [Abstract][Full Text] [Related]
14. Structure and properties of the clathrin-coated vesicle and yeast vacuolar V-ATPases. Forgac M J Bioenerg Biomembr; 1999 Feb; 31(1):57-65. PubMed ID: 10340849 [TBL] [Abstract][Full Text] [Related]
15. Loose binding of the DF axis with the A3B3 complex stimulates the initial activity of Enterococcus hirae V1-ATPase. Alam MJ; Arai S; Saijo S; Suzuki K; Mizutani K; Ishizuka-Katsura Y; Ohsawa N; Terada T; Shirouzu M; Yokoyama S; Iwata S; Kakinuma Y; Yamato I; Murata T PLoS One; 2013; 8(9):e74291. PubMed ID: 24058539 [TBL] [Abstract][Full Text] [Related]
16. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Zhao J; Benlekbir S; Rubinstein JL Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514 [TBL] [Abstract][Full Text] [Related]
18. Evidence for rotation of V1-ATPase. Imamura H; Nakano M; Noji H; Muneyuki E; Ohkuma S; Yoshida M; Yokoyama K Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2312-5. PubMed ID: 12598655 [TBL] [Abstract][Full Text] [Related]
19. V-ATPase of Thermus thermophilus is inactivated during ATP hydrolysis but can synthesize ATP. Yokoyama K; Muneyuki E; Amano T; Mizutani S; Yoshida M; Ishida M; Ohkuma S J Biol Chem; 1998 Aug; 273(32):20504-10. PubMed ID: 9685406 [TBL] [Abstract][Full Text] [Related]
20. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity. Rizzo JM; Tarsio M; Martínez-Muñoz GA; Kane PM J Biol Chem; 2007 Mar; 282(11):8521-32. PubMed ID: 17234635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]