BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34237377)

  • 1. Deciphering variation of 239 elite japonica rice genomes for whole genome sequences-enabled breeding.
    Liu C; Peng P; Li W; Ye C; Zhang S; Wang R; Li D; Guan S; Zhang L; Huang X; Guo Z; Guo J; Long Y; Li L; Pan G; Tian B; Xiao J
    Genomics; 2021 Sep; 113(5):3083-3091. PubMed ID: 34237377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resequencing and variation identification of whole genome of the japonica rice variety "Longdao24" with high yield.
    Jiang S; Sun S; Bai L; Ding G; Wang T; Xia T; Jiang H; Zhang X; Zhang F
    PLoS One; 2017; 12(7):e0181037. PubMed ID: 28715430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of floral regulatory genes of japonica rice cultivated at northern latitudes.
    Naranjo L; Talón M; Domingo C
    BMC Genomics; 2014 Feb; 15():101. PubMed ID: 24498868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.
    Liu W; Ghouri F; Yu H; Li X; Yu S; Shahid MQ; Liu X
    PLoS One; 2017; 12(7):e0180662. PubMed ID: 28700714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic atlases of introgression and differentiation reveal breeding footprints in Chinese cultivated rice.
    Chen Z; Li X; Lu H; Gao Q; Du H; Peng H; Qin P; Liang C
    J Genet Genomics; 2020 Oct; 47(10):637-649. PubMed ID: 33386250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide selection and introgression of Chinese rice varieties during breeding.
    Ge J; Wang J; Pang H; Li F; Lou D; Fan W; Liu Z; Li J; Li D; Nong B; Zhang Z; Wang Y; Huang J; Xing M; Nie Y; Xiao X; Zhang F; Wang W; Xu J; Kim SR; Kohli A; Ye G; Qiao W; Yang Q; Zheng X
    J Genet Genomics; 2022 May; 49(5):492-501. PubMed ID: 35292419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedigree-based genome re-sequencing reveals genetic variation patterns of elite backbone varieties during modern rice improvement.
    Zheng X; Li L; Liang F; Tan C; Tang S; Yu S; Diao Y; Li S; Hu Z
    Sci Rep; 2017 Mar; 7(1):292. PubMed ID: 28331200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A whole-genome SNP array (RICE6K) for genomic breeding in rice.
    Yu H; Xie W; Li J; Zhou F; Zhang Q
    Plant Biotechnol J; 2014 Jan; 12(1):28-37. PubMed ID: 24034357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice.
    Zhao Q; Feng Q; Lu H; Li Y; Wang A; Tian Q; Zhan Q; Lu Y; Zhang L; Huang T; Wang Y; Fan D; Zhao Y; Wang Z; Zhou C; Chen J; Zhu C; Li W; Weng Q; Xu Q; Wang ZX; Wei X; Han B; Huang X
    Nat Genet; 2018 Feb; 50(2):278-284. PubMed ID: 29335547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China.
    Sun J; Liu D; Wang JY; Ma DR; Tang L; Gao H; Xu ZJ; Chen WF
    Theor Appl Genet; 2012 Oct; 125(6):1149-57. PubMed ID: 22660631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Heading date 1 preponderant alleles from indica cultivars to breed high-yield, high-quality japonica rice varieties for cultivation in south China.
    Leng Y; Gao Y; Chen L; Yang Y; Huang L; Dai L; Ren D; Xu Q; Zhang Y; Ponce K; Hu J; Shen L; Zhang G; Chen G; Dong G; Gao Z; Guo L; Ye G; Qian Q; Zhu L; Zeng D
    Plant Biotechnol J; 2020 Jan; 18(1):119-128. PubMed ID: 31141272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars.
    Yonemaru J; Mizobuchi R; Kato H; Yamamoto T; Yamamoto E; Matsubara K; Hirabayashi H; Takeuchi Y; Tsunematsu H; Ishii T; Ohta H; Maeda H; Ebana K; Yano M
    BMC Genomics; 2014 May; 15(1):346. PubMed ID: 24885019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Common
    Seo J; Lee SM; Han JH; Shin NH; Lee YK; Kim B; Chin JH; Koh HJ
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32443496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome-Level Genome Assembly of a Fragrant
    Lu R; Liu J; Wang X; Song Z; Ji X; Li N; Ma G; Sun X
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic architecture of variation in heading date among Asian rice accessions.
    Hori K; Nonoue Y; Ono N; Shibaya T; Ebana K; Matsubara K; Ogiso-Tanaka E; Tanabata T; Sugimoto K; Taguchi-Shiobara F; Yonemaru J; Mizobuchi R; Uga Y; Fukuda A; Ueda T; Yamamoto S; Yamanouchi U; Takai T; Ikka T; Kondo K; Hoshino T; Yamamoto E; Adachi S; Nagasaki H; Shomura A; Shimizu T; Kono I; Ito S; Mizubayashi T; Kitazawa N; Nagata K; Ando T; Fukuoka S; Yamamoto T; Yano M
    BMC Plant Biol; 2015 May; 15():115. PubMed ID: 25953146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments.
    Feltus FA; Wan J; Schulze SR; Estill JC; Jiang N; Paterson AH
    Genome Res; 2004 Sep; 14(9):1812-9. PubMed ID: 15342564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic variation in 3,010 diverse accessions of Asian cultivated rice.
    Wang W; Mauleon R; Hu Z; Chebotarov D; Tai S; Wu Z; Li M; Zheng T; Fuentes RR; Zhang F; Mansueto L; Copetti D; Sanciangco M; Palis KC; Xu J; Sun C; Fu B; Zhang H; Gao Y; Zhao X; Shen F; Cui X; Yu H; Li Z; Chen M; Detras J; Zhou Y; Zhang X; Zhao Y; Kudrna D; Wang C; Li R; Jia B; Lu J; He X; Dong Z; Xu J; Li Y; Wang M; Shi J; Li J; Zhang D; Lee S; Hu W; Poliakov A; Dubchak I; Ulat VJ; Borja FN; Mendoza JR; Ali J; Li J; Gao Q; Niu Y; Yue Z; Naredo MEB; Talag J; Wang X; Li J; Fang X; Yin Y; Glaszmann JC; Zhang J; Li J; Hamilton RS; Wing RA; Ruan J; Zhang G; Wei C; Alexandrov N; McNally KL; Li Z; Leung H
    Nature; 2018 May; 557(7703):43-49. PubMed ID: 29695866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: a case study from southern China.
    Qiu J; Zhu J; Fu F; Ye CY; Wang W; Mao L; Lin Z; Chen L; Zhang H; Guo L; Qiang S; Lu Y; Fan L
    Planta; 2014 Dec; 240(6):1353-63. PubMed ID: 25187076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice.
    Xie X; Du H; Tang H; Tang J; Tan X; Liu W; Li T; Lin Z; Liang C; Liu YG
    Sci China Life Sci; 2021 Feb; 64(2):282-293. PubMed ID: 32737856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.).
    Chen H; He H; Zou Y; Chen W; Yu R; Liu X; Yang Y; Gao YM; Xu JL; Fan LM; Li Y; Li ZK; Deng XW
    Theor Appl Genet; 2011 Oct; 123(6):869-79. PubMed ID: 21681488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.