BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34237393)

  • 1. Seaweeds rehydration and boiling: Impact on iodine, sodium, potassium, selenium, and total arsenic contents and health benefits for consumption.
    Correia H; Soares C; Morais S; Pinto E; Marques A; Nunes ML; Almeida A; Delerue-Matos C
    Food Chem Toxicol; 2021 Sep; 155():112385. PubMed ID: 34237393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to iodine, essential and non-essential trace element through seaweed consumption in humans.
    Barandiaran LN; Taylor VF; Karagas MR
    Sci Rep; 2024 Jun; 14(1):13698. PubMed ID: 38871780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed.
    Maehre HK; Malde MK; Eilertsen KE; Elvevoll EO
    J Sci Food Agric; 2014 Dec; 94(15):3281-90. PubMed ID: 24700148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk assessment of iodine intake from the consumption of red seaweeds (Palmaria palmata and Chondrus crispus).
    Darias-Rosales J; Rubio C; Gutiérrez ÁJ; Paz S; Hardisson A
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45737-45741. PubMed ID: 32803579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic species and their health risks in edible seaweeds collected along the Chinese coastline.
    Huang Z; Bi R; Musil S; Pétursdóttir ÁH; Luo B; Zhao P; Tan X; Jia Y
    Sci Total Environ; 2022 Nov; 847():157429. PubMed ID: 35863575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biologically active agents of potential trade brown seaweed of the Far East Region].
    Tabakaeva OV; Tabakaev AV
    Vopr Pitan; 2016; 85(3):126-132. PubMed ID: 30645912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed.
    Kundel M; Thorenz UR; Petersen JH; Huang RJ; Bings NH; Hoffmann T
    Anal Bioanal Chem; 2012 Apr; 402(10):3345-57. PubMed ID: 22227744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile compounds and odour characteristics of seven species of dehydrated edible seaweeds.
    López-Pérez O; Picon A; Nuñez M
    Food Res Int; 2017 Sep; 99(Pt 3):1002-1010. PubMed ID: 28865610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of water-soluble arsenic compounds in commercial edible seaweed by LC-ICPMS.
    Llorente-Mirandes T; Ruiz-Chancho MJ; Barbero M; Rubio R; López-Sánchez JF
    J Agric Food Chem; 2011 Dec; 59(24):12963-8. PubMed ID: 22082352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Exposure to Iodine from the Consumption of Edible Seaweeds.
    González A; Paz S; Rubio C; Gutiérrez ÁJ; Hardisson A
    Biol Trace Elem Res; 2020 Oct; 197(2):361-366. PubMed ID: 31820353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consumer acceptability and chemical composition of whole-wheat breads incorporated with brown seaweed (Ascophyllum nodosum) or red seaweed (Chondrus crispus).
    Lamont T; McSweeney M
    J Sci Food Agric; 2021 Mar; 101(4):1507-1514. PubMed ID: 32851673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population.
    ; Dujardin B; Ferreira de Sousa R; Gómez Ruiz JÁ
    EFSA J; 2023 Jan; 21(1):e07798. PubMed ID: 36742462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High proportions of inorganic arsenic in Laminaria digitata but not in Ascophyllum nodosum samples from Ireland.
    Ronan JM; Stengel DB; Raab A; Feldmann J; O'Hea L; Bralatei E; McGovern E
    Chemosphere; 2017 Nov; 186():17-23. PubMed ID: 28759813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake kinetics and storage capacity of dissolved inorganic phosphorus and corresponding dissolved inorganic nitrate uptake in Saccharina latissima and Laminaria digitata (Phaeophyceae).
    Lubsch A; Timmermans KR
    J Phycol; 2019 Jun; 55(3):637-650. PubMed ID: 30734288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary exposure and risk assessment to trace elements and iodine in seaweeds.
    Ficheux AS; Boniou B; Durand G; Garrec RL; Pierre O; Roudot AC
    J Trace Elem Med Biol; 2023 Jul; 78():127187. PubMed ID: 37210921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microbiota of eight species of dehydrated edible seaweeds from North West Spain.
    Del Olmo A; Picon A; Nuñez M
    Food Microbiol; 2018 Apr; 70():224-231. PubMed ID: 29173631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial diversity in six species of fresh edible seaweeds submitted to high pressure processing and long-term refrigerated storage.
    Picon A; Del Olmo A; Nuñez M
    Food Microbiol; 2021 Apr; 94():103646. PubMed ID: 33279071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins extracted from seaweed
    Nadeeshani H; Hassouna A; Lu J
    Crit Rev Food Sci Nutr; 2022; 62(22):6187-6203. PubMed ID: 33703974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of iodine content in common commercially available edible seaweeds.
    Teas J; Pino S; Critchley A; Braverman LE
    Thyroid; 2004 Oct; 14(10):836-41. PubMed ID: 15588380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aquaculture Production of the Brown Seaweeds
    Purcell-Meyerink D; Packer MA; Wheeler TT; Hayes M
    Molecules; 2021 Feb; 26(5):. PubMed ID: 33671085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.