BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34237665)

  • 1. Thermal conductivity of random polycrystalline BC
    Fooladpanjeh S; Yousefi F; Molaei F; Zarghami Dehaghani M; Sajadi SM; Abida O; Habibzadeh S; Hamed Mashhadzadeh A; Saeb MR
    J Mol Graph Model; 2021 Sep; 107():107977. PubMed ID: 34237665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An insight into thermal properties of BC
    Dehaghani MZ; Molaei F; Yousefi F; Sajadi SM; Esmaeili A; Mohaddespour A; Farzadian O; Habibzadeh S; Mashhadzadeh AH; Spitas C; Saeb MR
    Sci Rep; 2021 Nov; 11(1):23064. PubMed ID: 34845328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries.
    Sood A; Cheaito R; Bai T; Kwon H; Wang Y; Li C; Yates L; Bougher T; Graham S; Asheghi M; Goorsky M; Goodson KE
    Nano Lett; 2018 Jun; 18(6):3466-3472. PubMed ID: 29631399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture fingerprint of polycrystalline C
    Bagheri B; Zarghami Dehaghani M; Esmaeili Safa M; Zarrintaj P; Hamed Mashhadzadeh A; Ganjali MR; Saeb MR
    J Mol Graph Model; 2021 Jul; 106():107899. PubMed ID: 33857891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling.
    Khalkhali M; Rajabpour A; Khoeini F
    Sci Rep; 2019 Apr; 9(1):5684. PubMed ID: 30952974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonon-Grain-Boundary-Interaction-Mediated Thermal Transport in Two-Dimensional Polycrystalline MoS
    Lin C; Chen X; Zou X
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25547-25555. PubMed ID: 31273972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.
    Mortazavi B; Pötschke M; Cuniberti G
    Nanoscale; 2014 Mar; 6(6):3344-52. PubMed ID: 24518878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide.
    He J; Zhang L; Liu L
    Phys Chem Chem Phys; 2019 Jun; 21(23):12192-12200. PubMed ID: 31149685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion.
    Liu J; Xu Z; Cheng Z; Xu S; Wang X
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27279-88. PubMed ID: 26593380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Record Low Thermal Conductivity of Polycrystalline MoS
    Sledzinska M; Quey R; Mortazavi B; Graczykowski B; Placidi M; Saleta Reig D; Navarro-Urrios D; Alzina F; Colombo L; Roche S; Sotomayor Torres CM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37905-37911. PubMed ID: 28956443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Mosaicity to Tune Thermal Transport in Polycrystalline Aluminum Nitride Thin Films.
    Singh S; Shervin S; Sun H; Yarali M; Chen J; Lin R; Li KH; Li X; Ryou JH; Mavrokefalos A
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20085-20094. PubMed ID: 29772174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional Crossover of Thermal Transport in Hybrid Boron Nitride Nanostructures.
    Sakhavand N; Shahsavari R
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18312-9. PubMed ID: 26158661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat transport in pristine and polycrystalline single-layer hexagonal boron nitride.
    Dong H; Hirvonen P; Fan Z; Ala-Nissila T
    Phys Chem Chem Phys; 2018 Oct; 20(38):24602-24612. PubMed ID: 30229758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity and interfacial thermal resistance behavior for the polyaniline-boron carbide heterostructure.
    Mayelifartash A; Abdol MA; Sadeghzadeh S
    Phys Chem Chem Phys; 2021 Jun; 23(23):13310-13322. PubMed ID: 34095909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Transport of Graphene Sheets with Fractal Defects.
    Kang Y; Duan F; Shangguan S; Zhang Y; Zhou T; Si B
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations.
    Bagri A; Kim SP; Ruoff RS; Shenoy VB
    Nano Lett; 2011 Sep; 11(9):3917-21. PubMed ID: 21863804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimodal Grain-Size Scaling of Thermal Transport in Polycrystalline Graphene from Large-Scale Molecular Dynamics Simulations.
    Fan Z; Hirvonen P; Pereira LFC; Ervasti MM; Elder KR; Donadio D; Harju A; Ala-Nissila T
    Nano Lett; 2017 Oct; 17(10):5919-5924. PubMed ID: 28877440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size.
    Feser JP; Chan EM; Majumdar A; Segalman RA; Urban JJ
    Nano Lett; 2013 May; 13(5):2122-7. PubMed ID: 23617743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron nitride-nanosheet enhanced cellulose nanofiber aerogel with excellent thermal management properties.
    Liu Y; Zhang Y; Liao T; Gao L; Wang M; Xu X; Yang X; Liu H
    Carbohydr Polym; 2020 Aug; 241():116425. PubMed ID: 32507211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.
    Mortazavi B; Pereira LFC; Jiang JW; Rabczuk T
    Sci Rep; 2015 Aug; 5():13228. PubMed ID: 26286820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.