These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34237665)

  • 41. Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study.
    Mahdizadeh SJ; Goharshadi EK; Akhlamadi G
    J Mol Graph Model; 2016 Jul; 68():1-13. PubMed ID: 27314866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Bhuiyan AG; Hashimoto A
    Nanotechnology; 2019 Nov; 30(44):445707. PubMed ID: 31357179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals.
    Hwang J; Kim H; Han MK; Hong J; Shim JH; Tak JY; Lim YS; Jin Y; Kim J; Park H; Lee DK; Bahk JH; Kim SJ; Kim W
    ACS Nano; 2019 Jul; 13(7):8347-8355. PubMed ID: 31260259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Processing and Thermal Conductivity of Bulk Nanocrystalline Aluminum Nitride.
    Duarte MA; Mishra V; Dames C; Kodera Y; Garay JE
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature distribution in graphene doped with nitrogen and graphene with grain boundary.
    Lotfi E; Neek-Amal M
    J Mol Graph Model; 2017 Jun; 74():100-104. PubMed ID: 28384497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
    Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S
    Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.
    Zhou Y; Hu M
    Nano Lett; 2016 Oct; 16(10):6178-6187. PubMed ID: 27603153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermal Conductivity of B-DNA.
    Mahalingam V; Harursampath D
    J Phys Chem B; 2021 Feb; 125(5):1363-1368. PubMed ID: 33523668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets.
    Hsieh CT; Lee CE; Chen YF; Chang JK; Teng HS
    Nanoscale; 2015 Nov; 7(44):18663-70. PubMed ID: 26498343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS
    Kargar F; Coleman EA; Ghosh S; Lee J; Gomez MJ; Liu Y; Magana AS; Barani Z; Mohammadzadeh A; Debnath B; Wilson RB; Lake RK; Balandin AA
    ACS Nano; 2020 Feb; 14(2):2424-2435. PubMed ID: 31951116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lone Pair Rotation and Bond Heterogeneity Leading to Ultralow Thermal Conductivity in Aikinite.
    Carnevali V; Mukherjee S; Voneshen DJ; Maji K; Guilmeau E; Powell AV; Vaqueiro P; Fornari M
    J Am Chem Soc; 2023 Apr; 145(16):9313-9325. PubMed ID: 37053084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Highly Thermoconductive, Thermostable, and Super-Flexible Film by Engineering 1D Rigid Rod-Like Aramid Nanofiber/2D Boron Nitride Nanosheets.
    Wu K; Wang J; Liu D; Lei C; Liu D; Lei W; Fu Q
    Adv Mater; 2020 Feb; 32(8):e1906939. PubMed ID: 31945238
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High In-Plane Thermal Conductivity of Aluminum Nitride Thin Films.
    Hoque MSB; Koh YR; Braun JL; Mamun A; Liu Z; Huynh K; Liao ME; Hussain K; Cheng Z; Hoglund ER; Olson DH; Tomko JA; Aryana K; Galib R; Gaskins JT; Elahi MMM; Leseman ZC; Howe JM; Luo T; Graham S; Goorsky MS; Khan A; Hopkins PE
    ACS Nano; 2021 Jun; 15(6):9588-9599. PubMed ID: 33908771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study.
    Raeisi M; Ahmadi S; Rajabpour A
    Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity.
    Yang G; Wang B; Cheng H; Mao Z; Xu H; Zhong Y; Feng X; Yu J; Sui X
    Int J Biol Macromol; 2020 Apr; 148():627-634. PubMed ID: 31968214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrical transport and thermoelectric properties of boron carbide nanowires.
    Kirihara K; Mukaida M; Shimizu Y
    Nanotechnology; 2017 Apr; 28(14):145404. PubMed ID: 28207418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.