BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34238592)

  • 1. Non-homologous end-joining at challenged replication forks: an RNA connection?
    Audoynaud C; Vagner S; Lambert S
    Trends Genet; 2021 Nov; 37(11):973-985. PubMed ID: 34238592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rb family-independent activating E2F increases genome stability, promotes homologous recombination, and decreases non-homologous end joining.
    Pei X; Du E; Sheng Z; Du W
    Mech Dev; 2020 Jun; 162():103607. PubMed ID: 32217105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair.
    Blasiak J; Szczepańska J; Sobczuk A; Fila M; Pawlowska E
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of DNA Double-Strand Break Repair by Non-Coding RNAs.
    Thapar R
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30373256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein ADP-ribosylation and the cellular response to DNA strand breaks.
    Caldecott KW
    DNA Repair (Amst); 2014 Jul; 19():108-13. PubMed ID: 24755000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired DNA double-strand break repair contributes to the age-associated rise of genomic instability in humans.
    Li Z; Zhang W; Chen Y; Guo W; Zhang J; Tang H; Xu Z; Zhang H; Tao Y; Wang F; Jiang Y; Sun FL; Mao Z
    Cell Death Differ; 2016 Nov; 23(11):1765-1777. PubMed ID: 27391797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA double-strand break repair-pathway choice in somatic mammalian cells.
    Scully R; Panday A; Elango R; Willis NA
    Nat Rev Mol Cell Biol; 2019 Nov; 20(11):698-714. PubMed ID: 31263220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. XLF and H2AX function in series to promote replication fork stability.
    Chen BR; Quinet A; Byrum AK; Jackson J; Berti M; Thangavel S; Bredemeyer AL; Hindi I; Mosammaparast N; Tyler JK; Vindigni A; Sleckman BP
    J Cell Biol; 2019 Jul; 218(7):2113-2123. PubMed ID: 31123184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple mechanisms contribute to double-strand break repair at rereplication forks in Drosophila follicle cells.
    Alexander JL; Beagan K; Orr-Weaver TL; McVey M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13809-13814. PubMed ID: 27849606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress.
    Jiang Y
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Double strand break repair, one mechanism can hide another: alternative non-homologous end joining].
    Rass E; Grabarz A; Bertrand P; Lopez BS
    Cancer Radiother; 2012 Feb; 16(1):1-10. PubMed ID: 21737335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is non-homologous end-joining really an inherently error-prone process?
    Bétermier M; Bertrand P; Lopez BS
    PLoS Genet; 2014 Jan; 10(1):e1004086. PubMed ID: 24453986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.
    Vaidya A; Mao Z; Tian X; Spencer B; Seluanov A; Gorbunova V
    PLoS Genet; 2014 Jul; 10(7):e1004511. PubMed ID: 25033455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One end to rule them all: Non-homologous end-joining and homologous recombination at DNA double-strand breaks.
    Ensminger M; Löbrich M
    Br J Radiol; 2020 Nov; 93(1115):20191054. PubMed ID: 32105514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-homologous DNA end joining and alternative pathways to double-strand break repair.
    Chang HHY; Pannunzio NR; Adachi N; Lieber MR
    Nat Rev Mol Cell Biol; 2017 Aug; 18(8):495-506. PubMed ID: 28512351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Error-Prone Repair of DNA Double-Strand Breaks.
    Rodgers K; McVey M
    J Cell Physiol; 2016 Jan; 231(1):15-24. PubMed ID: 26033759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-PKcs promotes fork reversal and chemoresistance.
    Dibitetto D; Marshall S; Sanchi A; Liptay M; Badar J; Lopes M; Rottenberg S; Smolka MB
    Mol Cell; 2022 Oct; 82(20):3932-3942.e6. PubMed ID: 36130596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.