BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34238743)

  • 1. [Assessment of imaging performance of digital breast tomosynthesis based on systematic simulation].
    Deng Y; Zhu M; Li S; Wang Y; Gao Y; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jun; 41(6):898-908. PubMed ID: 34238743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced anatomical clutter in digital breast tomosynthesis with statistical iterative reconstruction.
    Garrett JW; Li Y; Li K; Chen GH
    Med Phys; 2018 May; 45(5):2009-2022. PubMed ID: 29542821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cone-beam breast computed tomography using ultra-fast image reconstruction with constrained, total-variation minimization for suppression of artifacts.
    Tseng HW; Vedantham S; Karellas A
    Phys Med; 2020 May; 73():117-124. PubMed ID: 32361156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction.
    Lu Y; Chan HP; Wei J; Hadjiiski LM
    Med Phys; 2010 Nov; 37(11):6003-14. PubMed ID: 21158312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses.
    Polat A; Yildirim I
    J Xray Sci Technol; 2018; 26(3):347-360. PubMed ID: 29504549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DIR-DBTnet: Deep iterative reconstruction network for three-dimensional digital breast tomosynthesis imaging.
    Su T; Deng X; Yang J; Wang Z; Fang S; Zheng H; Liang D; Ge Y
    Med Phys; 2021 May; 48(5):2289-2300. PubMed ID: 33594671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of digital tomosynthesis reconstruction algorithms used to reduce metal artifacts for arthroplasty: A phantom study.
    Gomi T; Sakai R; Goto M; Hara H; Watanabe Y; Umeda T
    Phys Med; 2017 Oct; 42():28-38. PubMed ID: 29173918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive multiscale anisotropic diffusion regularized image reconstruction method for digital breast tomosynthesis.
    Liu Y; Zhang C; Li W; Tang Y; Gao X
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):993-1008. PubMed ID: 30374771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total variation minimization filter for DBT imaging.
    Mota AM; Matela N; Oliveira N; Almeida P
    Med Phys; 2015 Jun; 42(6):2827-36. PubMed ID: 26127035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iterative reconstruction for image enhancement and dose reduction in diagnostic cone beam CT imaging.
    Matenine D; Schmittbuhl M; Bedwani S; Després P; de Guise JA
    J Xray Sci Technol; 2019; 27(5):805-819. PubMed ID: 31450539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis.
    Lu Y; Chan HP; Wei J; Hadjiiski LM; Samala RK
    Med Phys; 2015 Jan; 42(1):182-95. PubMed ID: 25563259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital breast tomosynthesis: Dose and image quality assessment.
    Maldera A; De Marco P; Colombo PE; Origgi D; Torresin A
    Phys Med; 2017 Jan; 33():56-67. PubMed ID: 28010921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Enhanced Visualization of DBT Imaging Using Blind Deconvolution and Total Variation Minimization Regularization.
    Mota AM; Clarkson MJ; Almeida P; Matela N
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4094-4101. PubMed ID: 32746152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.