These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34239084)

  • 1. Chemical heterogeneity enhances hydrogen resistance in high-strength steels.
    Sun B; Lu W; Gault B; Ding R; Makineni SK; Wan D; Wu CH; Chen H; Ponge D; Raabe D
    Nat Mater; 2021 Dec; 20(12):1629-1634. PubMed ID: 34239084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen-related challenges for the steelmaker: the search for proper testing.
    Thiessen RG
    Philos Trans A Math Phys Eng Sci; 2017 Jul; 375(2098):. PubMed ID: 28607187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heteroatom Modification Enhances Corrosion Durability in High-Mechanical-Performance Graphene-Reinforced Aluminum Matrix Composites.
    Xie Y; Meng X; Chang Y; Mao D; Qin Z; Wan L; Huang Y
    Adv Sci (Weinh); 2022 Aug; 9(23):e2104464. PubMed ID: 35703130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging.
    Yang X; Yu H; Song C; Li L
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure.
    Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid Metal Embrittlement of Advanced High Strength Steel: Experiments and Damage Modeling.
    Prabitz KM; Asadzadeh MZ; Pichler M; Antretter T; Beal C; Schubert H; Hilpert B; Gruber M; Sierlinger R; Ecker W
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates.
    Chen YS; Lu H; Liang J; Rosenthal A; Liu H; Sneddon G; McCarroll I; Zhao Z; Li W; Guo A; Cairney JM
    Science; 2020 Jan; 367(6474):171-175. PubMed ID: 31919217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging.
    Oh DK; Kim SG; Shin SH; Hwang B
    Materials (Basel); 2024 Oct; 17(19):. PubMed ID: 39410457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining.
    El-Atwani O; Kim H; Gigax JG; Harvey C; Aytuna B; Efe M; Maloy SA
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy.
    Luo H; Li Z; Raabe D
    Sci Rep; 2017 Aug; 7(1):9892. PubMed ID: 28852168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Addition of Nb and V on the Microstructural Evolution and Hydrogen Embrittlement Resistance of High Strength Martensitic Steels.
    Liu B; Liao X; Tang Y; Si Y; Feng Y; Cao P; Dai Q; Li K
    Scanning; 2022; 2022():4040800. PubMed ID: 35282565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Interaction between a Steel Microstructure and Hydrogen.
    Depover T; Laureys A; Pérez Escobar D; Van den Eeckhout E; Wallaert E; Verbeken K
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29710803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels.
    Wang F; Song M; Elkot MN; Yao N; Sun B; Song M; Wang Z; Raabe D
    Science; 2024 May; 384(6699):1017-1022. PubMed ID: 38815014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.
    Heibel S; Dettinger T; Nester W; Clausmeyer T; Tekkaya AE
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29747417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength gradient enhances fatigue resistance of steels.
    Ma Z; Liu J; Wang G; Wang H; Wei Y; Gao H
    Sci Rep; 2016 Feb; 6():22156. PubMed ID: 26907708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels.
    Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient Microstructure Design in Stainless Steel: A Strategy for Uniting Strength-Ductility Synergy and Corrosion Resistance.
    He Q; Wei W; Wang MS; Guo FJ; Zhai Y; Wang YF; Huang CX
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.