These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34239571)
1. Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model. Lotz B; Bothe F; Deubel AK; Hesse E; Renz Y; Werner C; Schäfer S; Böck T; Groll J; von Rechenberg B; Richter W; Hagmann S Int J Biomater; 2021; 2021():5583815. PubMed ID: 34239571 [TBL] [Abstract][Full Text] [Related]
2. Fixation of Hydrogel Constructs for Cartilage Repair in the Equine Model: A Challenging Issue. Mancini IAD; Vindas Bolaños RA; Brommer H; Castilho M; Ribeiro A; van Loon JPAM; Mensinga A; van Rijen MHP; Malda J; van Weeren R Tissue Eng Part C Methods; 2017 Nov; 23(11):804-814. PubMed ID: 28795641 [TBL] [Abstract][Full Text] [Related]
3. Treatment of Focal Cartilage Defects in Minipigs with Zonal Chondrocyte/Mesenchymal Progenitor Cell Constructs. Bothe F; Deubel AK; Hesse E; Lotz B; Groll J; Werner C; Richter W; Hagmann S Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717402 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related]
5. A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model. Mancini IAD; Schmidt S; Brommer H; Pouran B; Schäfer S; Tessmar J; Mensinga A; van Rijen MHP; Groll J; Blunk T; Levato R; Malda J; van Weeren PR Biofabrication; 2020 Jul; 12(3):035028. PubMed ID: 32434160 [TBL] [Abstract][Full Text] [Related]
6. An Injectable Hydrogel Scaffold With Kartogenin-Encapsulated Nanoparticles for Porcine Cartilage Regeneration: A 12-Month Follow-up Study. Yan W; Xu X; Xu Q; Sun Z; Lv Z; Wu R; Yan W; Jiang Q; Shi D Am J Sports Med; 2020 Nov; 48(13):3233-3244. PubMed ID: 33026830 [TBL] [Abstract][Full Text] [Related]
7. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Kunisch E; Knauf AK; Hesse E; Freudenberg U; Werner C; Bothe F; Diederichs S; Richter W Biofabrication; 2018 Oct; 11(1):015001. PubMed ID: 30376451 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. Jackson DW; Lalor PA; Aberman HM; Simon TM J Bone Joint Surg Am; 2001 Jan; 83(1):53-64. PubMed ID: 11205859 [TBL] [Abstract][Full Text] [Related]
9. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model. Ha CW; Park YB; Chung JY; Park YG Stem Cells Transl Med; 2015 Sep; 4(9):1044-51. PubMed ID: 26240434 [TBL] [Abstract][Full Text] [Related]
10. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. Orth P; Meyer HL; Goebel L; Eldracher M; Ong MF; Cucchiarini M; Madry H J Orthop Res; 2013 Nov; 31(11):1772-9. PubMed ID: 23813860 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects. Galarraga JH; Zlotnick HM; Locke RC; Gupta S; Fogarty NL; Masada KM; Stoeckl BD; Laforest L; Castilho M; Malda J; Levato R; Carey JL; Mauck RL; Burdick JA Int J Bioprint; 2023; 9(5):775. PubMed ID: 37457945 [TBL] [Abstract][Full Text] [Related]
12. Articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. Mainil-Varlet P; Rieser F; Grogan S; Mueller W; Saager C; Jakob RP Osteoarthritis Cartilage; 2001; 9 Suppl A():S6-15. PubMed ID: 11680690 [TBL] [Abstract][Full Text] [Related]
13. Autologous tissue transplantations for osteochondral repair. Christensen BB Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034191 [TBL] [Abstract][Full Text] [Related]
14. Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform. Wu Y; Yang Z; Denslin V; Ren X; Lee CS; Yap FL; Lee EH Am J Sports Med; 2020 Jun; 48(7):1735-1747. PubMed ID: 32191492 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of a calcified cartilage connecting zone by GDF-5-augmented fibrin hydrogel in a novel layered ectopic in vivo model. Diederichs S; Renz Y; Hagmann S; Lotz B; Seebach E; Richter W J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2214-2224. PubMed ID: 29068568 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Idaszek J; Costantini M; Karlsen TA; Jaroszewicz J; Colosi C; Testa S; Fornetti E; Bernardini S; Seta M; Kasarełło K; Wrzesień R; Cannata S; Barbetta A; Gargioli C; Brinchman JE; Święszkowski W Biofabrication; 2019 Jul; 11(4):044101. PubMed ID: 31151123 [TBL] [Abstract][Full Text] [Related]
18. CaAlg hydrogel containing bone morphogenetic protein 4-enhanced adipose-derived stem cells combined with osteochondral mosaicplasty facilitated the repair of large osteochondral defects. Chen L; Shi Y; Zhang X; Hu X; Shao Z; Dai L; Ju X; Ao Y; Wang J Knee Surg Sports Traumatol Arthrosc; 2019 Nov; 27(11):3668-3678. PubMed ID: 30923857 [TBL] [Abstract][Full Text] [Related]
19. Developmental engineering of living implants for deep osteochondral joint surface defects. Mendes LF; Bosmans K; Van Hoven I; Viseu SR; Maréchal M; Luyten FP Bone; 2020 Oct; 139():115520. PubMed ID: 32622872 [TBL] [Abstract][Full Text] [Related]
20. Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion. Filardo G; Drobnic M; Perdisa F; Kon E; Hribernik M; Marcacci M Osteoarthritis Cartilage; 2014 Apr; 22(4):557-65. PubMed ID: 24487043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]