These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34239900)

  • 1. Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People.
    Lu CL; Liu ZY; Huang JT; Huang CI; Wang BH; Chen Y; Wu NH; Wang HC; Giarré L; Kuo PY
    Front Robot AI; 2021; 8():654132. PubMed ID: 34239900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outdoor Localization Using BLE RSSI and Accessible Pedestrian Signals for the Visually Impaired at Intersections.
    Shin K; McConville R; Metatla O; Chang M; Han C; Lee J; Roudaut A
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision-based Mobile Indoor Assistive Navigation Aid for Blind People.
    Li B; Muñoz JP; Rong X; Chen Q; Xiao J; Tian Y; Arditi A; Yousuf M
    IEEE Trans Mob Comput; 2019 Mar; 18(3):702-714. PubMed ID: 30774566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Route planning methods in indoor navigation tools for vision impaired persons: a systematic review.
    Fernando N; McMeekin DA; Murray I
    Disabil Rehabil Assist Technol; 2021 May; ():1-20. PubMed ID: 34043928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An UWB/Vision Fusion Scheme for Determining Pedestrians' Indoor Location.
    Liu F; Zhang J; Wang J; Han H; Yang D
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
    Segura MJ; Auat Cheein FA; Toibero JM; Mut V; Carelli R
    Sensors (Basel); 2011; 11(2):2035-55. PubMed ID: 22319397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep reinforcement learning-aided autonomous navigation with landmark generators.
    Wang X; Sun Y; Xie Y; Bin J; Xiao J
    Front Neurorobot; 2023; 17():1200214. PubMed ID: 37674856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An indoor navigation system for the visually impaired.
    Guerrero LA; Vasquez F; Ochoa SF
    Sensors (Basel); 2012; 12(6):8236-58. PubMed ID: 22969398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparison Study between Traditional and Deep-Reinforcement-Learning-Based Algorithms for Indoor Autonomous Navigation in Dynamic Scenarios.
    Arce D; Solano J; Beltrán C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of Navigation Assistive Tools and Technologies for the Visually Impaired.
    Messaoudi MD; Menelas BJ; Mcheick H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robot-Beacon Distributed Range-Only SLAM for Resource-Constrained Operation.
    Torres-González A; Martínez-de Dios JR; Ollero A
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28425946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People.
    Martinez-Sala AS; Losilla F; Sánchez-Aarnoutse JC; García-Haro J
    Sensors (Basel); 2015 Dec; 15(12):32168-87. PubMed ID: 26703610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loosely Coupled GNSS and UWB with INS Integration for Indoor/Outdoor Pedestrian Navigation.
    Di Pietra V; Dabove P; Piras M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SOLO-SLAM: A Parallel Semantic SLAM Algorithm for Dynamic Scenes.
    Sun L; Wei J; Su S; Wu P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Compressed Communication and Application in Multi-Robot 2D-Lidar SLAM: An Intelligent Huffman Algorithm.
    Zhang L; Deng J
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.