These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34239900)

  • 21. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A UWB/Improved PDR Integration Algorithm Applied to Dynamic Indoor Positioning for Pedestrians.
    Chen P; Kuang Y; Chen X
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safe and Robust Mobile Robot Navigation in Uneven Indoor Environments.
    Wang C; Wang J; Li C; Ho D; Cheng J; Yan T; Meng L; Meng MQ
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ASSIST: Evaluating the usability and performance of an indoor navigation assistant for blind and visually impaired people.
    Nair V; Olmschenk G; Seiple WH; Zhu Z
    Assist Technol; 2022 May; 34(3):289-299. PubMed ID: 32790580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cognitive and Affective Assessment of Navigation and Mobility Tasks for the Visually Impaired via Electroencephalography and Behavioral Signals.
    Lupu RG; Mitruț O; Stan A; Ungureanu F; Kalimeri K; Moldoveanu A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fuzzy Logic Type-2 Based Wireless Indoor Localization System for Navigation of Visually Impaired People in Buildings.
    Al-Madani B; Orujov F; Maskeliūnas R; Damaševičius R; Venčkauskas A
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 6-DOF Pose Estimation of a Robotic Navigation Aid by Tracking Visual and Geometric Features.
    Ye C; Hong S; Tamjidi A
    IEEE Trans Autom Sci Eng; 2015 Oct; 12(4):1169-1180. PubMed ID: 26924949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous Indoor Pedestrian Localization and House Mapping Based on Inertial Measurement Unit and Bluetooth Low-Energy Beacon Data.
    Ceron JD; Kluge F; Küderle A; Eskofier BM; López DM
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Robust PDR/UWB Integrated Indoor Localization Approach for Pedestrians in Harsh Environments.
    Tong H; Xin N; Su X; Chen T; Wu J
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning indoor robot navigation using visual and sensorimotor map information.
    Yan W; Weber C; Wermter S
    Front Neurorobot; 2013; 7():15. PubMed ID: 24109451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structured Kernel Subspace Learning for Autonomous Robot Navigation.
    Kim E; Choi S; Oh S
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Training Smartphone Application for the Simulation of Outdoor Blind Pedestrian Navigation: Usability, UX Evaluation, Sentiment Analysis.
    Theodorou P; Tsiligkos K; Meliones A; Filios C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time Pedestrian Crossing Recognition for Assistive Outdoor Navigation.
    Fontanesi S; Frigerio A; Fanucci L; Li W
    Stud Health Technol Inform; 2015; 217():963-8. PubMed ID: 26294593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and Development of a Wearable Assistive Device Integrating a Fuzzy Decision Support System for Blind and Visually Impaired People.
    Bouteraa Y
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indoor Navigation Systems for Visually Impaired Persons: Mapping the Features of Existing Technologies to User Needs.
    Plikynas D; Žvironas A; Budrionis A; Gudauskis M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.