These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 34239905)

  • 1. NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease.
    Wang Y; Fang Y; Lu P; Wu B; Zhou B
    Front Cardiovasc Med; 2021; 8():682298. PubMed ID: 34239905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embryonic development of bicuspid aortic valves.
    Soto-Navarrete MT; López-Unzu MÁ; Durán AC; Fernández B
    Prog Cardiovasc Dis; 2020; 63(4):407-418. PubMed ID: 32592706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic basis of aortic valvular disease.
    Koenig SN; Lincoln J; Garg V
    Curr Opin Cardiol; 2017 May; 32(3):239-245. PubMed ID: 28157139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental Mechanisms of Aortic Valve Malformation and Disease.
    Wu B; Wang Y; Xiao F; Butcher JT; Yutzey KE; Zhou B
    Annu Rev Physiol; 2017 Feb; 79():21-41. PubMed ID: 27959615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease.
    Sun L; Chandra S; Sucosky P
    PLoS One; 2012; 7(10):e48843. PubMed ID: 23119099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential BMP Signaling Mediates the Interplay Between Genetics and Leaflet Numbers in Aortic Valve Calcification.
    Jung JJ; Ahmad AA; Rajendran S; Wei L; Zhang J; Toczek J; Nie L; Kukreja G; Salarian M; Gona K; Ghim M; Chakraborty R; Martin KA; Tellides G; Heistad D; Sadeghi MM
    JACC Basic Transl Sci; 2022 Apr; 7(4):333-345. PubMed ID: 35540096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal mechanical stress on bicuspid aortic valve induces valvular calcification and inhibits Notch1/NICD/Runx2 signal.
    Li G; Shen N; Deng H; Wang Y; Kong G; Shi J; Dong N; Deng C
    PeerJ; 2023; 11():e14950. PubMed ID: 36908813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory role of Notch1 in calcific aortic valve disease.
    Acharya A; Hans CP; Koenig SN; Nichols HA; Galindo CL; Garner HR; Merrill WH; Hinton RB; Garg V
    PLoS One; 2011; 6(11):e27743. PubMed ID: 22110751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease.
    Chandra S; Rajamannan NM; Sucosky P
    Biomech Model Mechanobiol; 2012 Sep; 11(7):1085-96. PubMed ID: 22294208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell transcriptomics reveals cellular heterogeneity and macrophage-to-mesenchymal transition in bicuspid calcific aortic valve disease.
    Lyu T; Liu Y; Li B; Xu R; Guo J; Zhu D
    Biol Direct; 2023 Jun; 18(1):35. PubMed ID: 37391760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.
    MacGrogan D; D'Amato G; Travisano S; Martinez-Poveda B; Luxán G; Del Monte-Nieto G; Papoutsi T; Sbroggio M; Bou V; Gomez-Del Arco P; Gómez MJ; Zhou B; Redondo JM; Jiménez-Borreguero LJ; de la Pompa JL
    Circ Res; 2016 May; 118(10):1480-97. PubMed ID: 27056911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional differences in human aortic valve interstitial cells from patients with varying calcific aortic valve disease.
    Tuscher R; Khang A; West TM; Camillo C; Ferrari G; Sacks MS
    Front Physiol; 2023; 14():1168691. PubMed ID: 37405132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential biomarkers and immune cell infiltration involved in aortic valve calcification identified through integrated bioinformatics analysis.
    Lv X; Wang X; Liu J; Wang F; Sun M; Fan X; Ye Z; Liu P; Wen J
    Front Physiol; 2022; 13():944551. PubMed ID: 36589450
    [No Abstract]   [Full Text] [Related]  

  • 14. NFκB (Nuclear Factor κ-Light-Chain Enhancer of Activated B Cells) Activity Regulates Cell-Type-Specific and Context-Specific Susceptibility to Calcification in the Aortic Valve.
    Gee T; Farrar E; Wang Y; Wu B; Hsu K; Zhou B; Butcher J
    Arterioscler Thromb Vasc Biol; 2020 Mar; 40(3):638-655. PubMed ID: 31893948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and cellular aspects of calcific aortic valve disease.
    Towler DA
    Circ Res; 2013 Jul; 113(2):198-208. PubMed ID: 23833294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The methylation of Notch1 promoter mediates the osteogenesis differentiation in human aortic valve interstitial cells through Wnt/β-catenin signaling.
    Zhou Y; Li J; Zhou K; Liao X; Zhou X; Shen K
    J Cell Physiol; 2019 Nov; 234(11):20366-20376. PubMed ID: 31020645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects in the Exocyst-Cilia Machinery Cause Bicuspid Aortic Valve Disease and Aortic Stenosis.
    Fulmer D; Toomer K; Guo L; Moore K; Glover J; Moore R; Stairley R; Lobo G; Zuo X; Dang Y; Su Y; Fogelgren B; Gerard P; Chung D; Heydarpour M; Mukherjee R; Body SC; Norris RA; Lipschutz JH
    Circulation; 2019 Oct; 140(16):1331-1341. PubMed ID: 31387361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease.
    Dayawansa NH; Baratchi S; Peter K
    Front Cardiovasc Med; 2022; 9():783543. PubMed ID: 35355968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcific aortic valve disease: mechanisms, prevention and treatment.
    Moncla LM; Briend M; Bossé Y; Mathieu P
    Nat Rev Cardiol; 2023 Aug; 20(8):546-559. PubMed ID: 36829083
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.