BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34240102)

  • 1. pyconsFold: a fast and easy tool for modeling and docking using distance predictions.
    Lamb J; Elofsson A
    Bioinformatics; 2021 Nov; 37(21):3959-3960. PubMed ID: 34240102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PconsFold: improved contact predictions improve protein models.
    Michel M; Hayat S; Skwark MJ; Sander C; Marks DS; Elofsson A
    Bioinformatics; 2014 Sep; 30(17):i482-8. PubMed ID: 25161237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PconsC4: fast, accurate and hassle-free contact predictions.
    Michel M; Menéndez Hurtado D; Elofsson A
    Bioinformatics; 2019 Aug; 35(15):2677-2679. PubMed ID: 30590407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OPUS-X: an open-source toolkit for protein torsion angles, secondary structure, solvent accessibility, contact map predictions and 3D folding.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2021 Dec; 38(1):108-114. PubMed ID: 34478500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits and potential of combined folding and docking.
    Pozzati G; Zhu W; Bassot C; Lamb J; Kundrotas P; Elofsson A
    Bioinformatics; 2022 Jan; 38(4):954-961. PubMed ID: 34788800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving deep learning-based protein distance prediction in CASP14.
    Guo Z; Wu T; Liu J; Hou J; Cheng J
    Bioinformatics; 2021 Oct; 37(19):3190-3196. PubMed ID: 33961009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OpenMDlr: parallel, open-source tools for general protein structure modeling and refinement from pairwise distances.
    Davidson RB; Woods J; Effler TC; Thavappiragasam M; Mitchell JC; Parks JM; Sedova A
    Bioinformatics; 2022 Jun; 38(12):3297-3298. PubMed ID: 35512391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes.
    Zhang Y; Sanner MF
    Bioinformatics; 2019 Dec; 35(24):5121-5127. PubMed ID: 31161213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep graph learning of inter-protein contacts.
    Xie Z; Xu J
    Bioinformatics; 2022 Jan; 38(4):947-953. PubMed ID: 34755837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CONFOLD2: improved contact-driven ab initio protein structure modeling.
    Adhikari B; Cheng J
    BMC Bioinformatics; 2018 Jan; 19(1):22. PubMed ID: 29370750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function.
    Pietal MJ; Bujnicki JM; Kozlowski LP
    Bioinformatics; 2015 Nov; 31(21):3499-505. PubMed ID: 26130575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta.
    Chaudhury S; Lyskov S; Gray JJ
    Bioinformatics; 2010 Mar; 26(5):689-91. PubMed ID: 20061306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.
    Filatov G; Bauwens B; Kertész-Farkas A
    Bioinformatics; 2018 Oct; 34(19):3281-3288. PubMed ID: 29741583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BioStructMap: a Python tool for integration of protein structure and sequence-based features.
    Guy AJ; Irani V; Richards JS; Ramsland PA
    Bioinformatics; 2018 Nov; 34(22):3942-3944. PubMed ID: 29931276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BreakPoint Surveyor: a pipeline for structural variant visualization.
    Wyczalkowski MA; Wylie KM; Cao S; McLellan MD; Flynn J; Huang M; Ye K; Fan X; Chen K; Wendl MC; Ding L
    Bioinformatics; 2017 Oct; 33(19):3121-3122. PubMed ID: 28582538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scSampler: fast diversity-preserving subsampling of large-scale single-cell transcriptomic data.
    Song D; Xi NM; Li JJ; Wang L
    Bioinformatics; 2022 May; 38(11):3126-3127. PubMed ID: 35426898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.