These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 34240530)

  • 1. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction.
    Miller CV; Pittman M
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):2058-2112. PubMed ID: 34240530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic analysis of trophic diversity and evolution in Enantiornithes with new insights from Bohaiornithidae.
    Miller CV; Bright JA; Wang X; Zheng X; Pittman M
    Elife; 2024 Apr; 12():. PubMed ID: 38687200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet of Mesozoic toothed birds (Longipterygidae) inferredĀ from quantitative analysis of extant avian diet proxies.
    Miller CV; Pittman M; Wang X; Zheng X; Bright JA
    BMC Biol; 2022 May; 20(1):101. PubMed ID: 35550084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insight into the evolutionary assemblage of cranial kinesis from a Cretaceous bird.
    Wang M; Stidham TA; O'Connor JK; Zhou Z
    Elife; 2022 Dec; 11():. PubMed ID: 36469022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds.
    Li Z; Wang CC; Wang M; Chiang CC; Wang Y; Zheng X; Huang EW; Hsiao K; Zhou Z
    BMC Evol Biol; 2020 Apr; 20(1):46. PubMed ID: 32316913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-gastric phytoliths provide evidence for folivory in basal avialans of the Early Cretaceous Jehol Biota.
    Wu Y; Ge Y; Hu H; Stidham TA; Li Z; Bailleul AM; Zhou Z
    Nat Commun; 2023 Jul; 14(1):4558. PubMed ID: 37507397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earliest evidence for fruit consumption and potential seed dispersal by birds.
    Hu H; Wang Y; McDonald PG; Wroe S; O'Connor JK; Bjarnason A; Bevitt JJ; Yin X; Zheng X; Zhou Z; Benson RBJ
    Elife; 2022 Aug; 11():. PubMed ID: 35971758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new avialan theropod from an emerging Jurassic terrestrial fauna.
    Xu L; Wang M; Chen R; Dong L; Lin M; Xu X; Tang J; You H; Zhou G; Wang L; He W; Li Y; Zhang C; Zhou Z
    Nature; 2023 Sep; 621(7978):336-343. PubMed ID: 37674081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fish-Eating Enantiornithine Bird from the Early Cretaceous of China Provides Evidence of Modern Avian Digestive Features.
    Wang M; Zhou Z; Sullivan C
    Curr Biol; 2016 May; 26(9):1170-6. PubMed ID: 27133872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low ecological disparity in Early Cretaceous birds.
    Mitchell JS; Makovicky PJ
    Proc Biol Sci; 2014 Jul; 281(1787):. PubMed ID: 24870044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Late Cretaceous neornithine from Europe illuminates the origins of crown birds.
    Field DJ; Benito J; Chen A; Jagt JWM; Ksepka DT
    Nature; 2020 Mar; 579(7799):397-401. PubMed ID: 32188952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new basal bird from China with implications for morphological diversity in early birds.
    Wang M; Wang X; Wang Y; Zhou Z
    Sci Rep; 2016 Jan; 6():19700. PubMed ID: 26806355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fossil evidence of avian crops from the Early Cretaceous of China.
    Zheng X; Martin LD; Zhou Z; Burnham DA; Zhang F; Miao D
    Proc Natl Acad Sci U S A; 2011 Sep; 108(38):15904-7. PubMed ID: 21896733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unusual bird (Theropoda, Avialae) from the Early Cretaceous of Japan suggests complex evolutionary history of basal birds.
    Imai T; Azuma Y; Kawabe S; Shibata M; Miyata K; Wang M; Zhou Z
    Commun Biol; 2019; 2():399. PubMed ID: 31754639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution.
    Wang M; Stidham TA; Li Z; Xu X; Zhou Z
    Nat Commun; 2021 Jun; 12(1):3890. PubMed ID: 34162868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary origins of the avian brain.
    Balanoff AM; Bever GS; Rowe TB; Norell MA
    Nature; 2013 Sep; 501(7465):93-6. PubMed ID: 23903660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history.
    Tse YT; Miller CV; Pittman M
    BMC Ecol Evol; 2024 Apr; 24(1):39. PubMed ID: 38622512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies.
    Li Z; Wang M; Stidham TA; Zhou Z
    Nat Ecol Evol; 2023 Jan; 7(1):20-31. PubMed ID: 36593291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight.
    Feo TJ; Field DJ; Prum RO
    Proc Biol Sci; 2015 Mar; 282(1803):20142864. PubMed ID: 25673687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird.
    Wang M; Li Z; Zhou Z
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11470-11475. PubMed ID: 29073073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.