These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34240587)

  • 1. Impact of illumination spectrum and eye pigmentation on image quality from a fundus camera using transscleral illumination.
    Stepanov A; Thorstensen J; Tschudi J
    J Biomed Opt; 2021 Jul; 26(7):. PubMed ID: 34240587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraocular reflectance of the ocular fundus and its impact on increased retinal hazard.
    Fehler N; Lingenfelder C; Kupferschmid S; Hessling M
    Z Med Phys; 2022 Nov; 32(4):453-465. PubMed ID: 35618555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispectral imaging of the ocular fundus using light emitting diode illumination.
    Everdell NL; Styles IB; Calcagni A; Gibson J; Hebden J; Claridge E
    Rev Sci Instrum; 2010 Sep; 81(9):093706. PubMed ID: 20886986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light color efficiency-balanced trans-palpebral illumination for widefield fundus photography of the retina and choroid.
    Son T; Ma J; Toslak D; Rossi A; Kim H; Chan RVP; Yao X
    Sci Rep; 2022 Aug; 12(1):13850. PubMed ID: 35974053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundus camera guided photoacoustic ophthalmoscopy.
    Liu T; Li H; Song W; Jiao S; Zhang HF
    Curr Eye Res; 2013 Dec; 38(12):1229-34. PubMed ID: 24131226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the intraocular irradiance and potential retinal hazards at various positions in the eye during transscleral equatorial illumination for different applied pressures.
    Fehler N; Lingenfelder C; Kupferschmid S; Hessling M
    Z Med Phys; 2024 Nov; 34(4):610-619. PubMed ID: 36513575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-field fundus imaging with trans-palpebral illumination.
    Toslak D; Thapa D; Chen Y; Erol MK; Paul Chan RV; Yao X
    Proc SPIE Int Soc Opt Eng; 2017 Jan; 10045():. PubMed ID: 28781409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Image diagnostic of the retina with fundus cameras].
    Koschmieder I; Müller L
    Z Med Phys; 2007; 17(1):67-72. PubMed ID: 17549994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal parameters for retinal illumination and imaging in fundus cameras.
    DeHoog E; Schwiegerling J
    Appl Opt; 2008 Dec; 47(36):6769-77. PubMed ID: 19104528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of optical system for binocular fundus camera.
    Wu J; Lou S; Xiao Z; Geng L; Zhang F; Wang W; Liu M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):61-69. PubMed ID: 28956467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact-free trans-pars-planar illumination enables snapshot fundus camera for nonmydriatic wide field photography.
    Wang B; Toslak D; Alam MN; Chan RVP; Yao X
    Sci Rep; 2018 Jun; 8(1):8768. PubMed ID: 29884832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the influence of chromatic aberration and optical illumination bandwidth on fundus imaging in rats.
    Li H; Liu W; Zhang HF
    J Biomed Opt; 2015 Oct; 20(10):106010. PubMed ID: 26502233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral fluorescein angiography with the confocal scanning laser ophthalmoscope.
    Garcia CR; Rivero ME; Bartsch DU; Ishiko S; Takamiya A; Fukui K; Hirokawa H; Clark T; Yoshida A; Freeman WR
    Ophthalmology; 1999 Jun; 106(6):1114-8. PubMed ID: 10366079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable ultra-widefield fundus camera for multispectral imaging of the retina and choroid.
    Toslak D; Son T; Erol MK; Kim H; Kim TH; Chan RVP; Yao X
    Biomed Opt Express; 2020 Nov; 11(11):6281-6292. PubMed ID: 33282490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach to non-mydriatic portable fundus imaging.
    Hafiz F; Chalakkal RJ; Hong SC; Linde G; Hu R; O'Keeffe B; Boobin Y
    Expert Rev Med Devices; 2022 Apr; 19(4):303-314. PubMed ID: 35473498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundus camera systems: a comparative analysis.
    DeHoog E; Schwiegerling J
    Appl Opt; 2009 Jan; 48(2):221-8. PubMed ID: 19137032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro multispectral diffuse reflectance measurements of the porcine fundus.
    Salyer DA; Twietmeyer K; Beaudry N; Basavanthappa S; Park RI; Chipman R
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2120-4. PubMed ID: 15914632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disparity between fundus camera and scanning laser ophthalmoscope indocyanine green imaging of retinal pigment epithelium detachments.
    Flower RW; Csaky KG; Murphy RP
    Retina; 1998; 18(3):260-8. PubMed ID: 9654419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing portable widefield fundus camera for teleophthalmology: Technical challenges and potential solutions.
    Yao X; Son T; Ma J
    Exp Biol Med (Maywood); 2022 Feb; 247(4):289-299. PubMed ID: 34878934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.