These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34240608)

  • 1. Random Lasing via Plasmon-Induced Cavitation of Microbubbles.
    Sato R; Henzie J; Zhang B; Ishii S; Murai S; Takazawa K; Takeda Y
    Nano Lett; 2021 Jul; 21(14):6064-6070. PubMed ID: 34240608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic-induced self-assembly of WGM cavities via laser cavitation.
    Sato R; Henzie J; Ishii S; Takazawa K; Takeda Y
    Opt Express; 2020 Oct; 28(21):31923-31931. PubMed ID: 33115156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable random lasing behavior in plasmonic nanostructures.
    Yadav A; Zhong L; Sun J; Jiang L; Cheng GJ; Chi L
    Nano Converg; 2017; 4(1):1. PubMed ID: 28191445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanostars as Efficient Broadband Scatterers for Random Lasing.
    Ziegler J; Wörister C; Vidal C; Hrelescu C; Klar TA
    ACS Photonics; 2016 Jun; 3(6):919-923. PubMed ID: 27347494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-assisted random lasing from a single-mode fiber tip.
    Khatri DS; Li Y; Chen J; Stocks AE; Kwizera EA; Huang X; Argyropoulos C; Hoang T
    Opt Express; 2020 May; 28(11):16417-16426. PubMed ID: 32549465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling gain and feedback in coherent random lasers: experiments and simulations.
    Consoli A; López C
    Sci Rep; 2015 Nov; 5():16848. PubMed ID: 26577668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of Silver-Gold Bimetallic Nanoparticles for Random Lasing.
    Ismail WZW; Dawes JM
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-thin plasmonic random lasers.
    Zhai T; Xu Z; Wu X; Wang Y; Liu F; Zhang X
    Opt Express; 2016 Jan; 24(1):437-42. PubMed ID: 26832274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons.
    Brechbühler R; Vonk SJW; Aellen M; Lassaline N; Keitel RC; Cocina A; Rossinelli AA; Rabouw FT; Norris DJ
    ACS Nano; 2021 Jun; 15(6):9935-9944. PubMed ID: 34029074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles.
    Wang L; Wan Y; Shi L; Zhong H; Deng L
    Opt Express; 2016 Aug; 24(16):17593-602. PubMed ID: 27505729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lasing in dark and bright modes of a finite-sized plasmonic lattice.
    Hakala TK; Rekola HT; Väkeväinen AI; Martikainen JP; Nečada M; Moilanen AJ; Törmä P
    Nat Commun; 2017 Jan; 8():13687. PubMed ID: 28045047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials.
    Wang Z; Meng X; Choi SH; Knitter S; Kim YL; Cao H; Shalaev VM; Boltasseva A
    Nano Lett; 2016 Apr; 16(4):2471-7. PubMed ID: 27023052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals.
    Yang A; Li Z; Knudson MP; Hryn AJ; Wang W; Aydin K; Odom TW
    ACS Nano; 2015 Dec; 9(12):11582-8. PubMed ID: 26456299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons.
    Fernandez-Bravo A; Wang D; Barnard ES; Teitelboim A; Tajon C; Guan J; Schatz GC; Cohen BE; Chan EM; Schuck PJ; Odom TW
    Nat Mater; 2019 Nov; 18(11):1172-1176. PubMed ID: 31548631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes.
    Wan Y; An Y; Deng L
    Sci Rep; 2017 Nov; 7(1):16185. PubMed ID: 29170519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time tunable lasing from plasmonic nanocavity arrays.
    Yang A; Hoang TB; Dridi M; Deeb C; Mikkelsen MH; Schatz GC; Odom TW
    Nat Commun; 2015 Apr; 6():6939. PubMed ID: 25891212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance energy transfer-assisted random lasing in light-harvesting bio-antenna enhanced with a plasmonic local field.
    Kumbhakar P; Biswas S; Kumbhakar P
    RSC Adv; 2019 Nov; 9(65):37705-37713. PubMed ID: 35541775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.