These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34240727)

  • 21. Reversible Control of Chemoselectivity in Au
    Zhao J; Li Q; Zhuang S; Song Y; Morris DJ; Zhou M; Wu Z; Zhang P; Jin R
    J Phys Chem Lett; 2018 Dec; 9(24):7173-7179. PubMed ID: 30537840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The reduction of carbon dioxide in iron biocatalyst catalytic hydrogenation reaction: a theoretical study.
    Yang L; Wang H; Zhang N; Hong S
    Dalton Trans; 2013 Aug; 42(31):11186-93. PubMed ID: 23807290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.
    Zhu F; Zhu-Ge L; Yang G; Zhou S
    ChemSusChem; 2015 Feb; 8(4):609-12. PubMed ID: 25603778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductive hydrogenation of polycyclic aromatic hydrocarbons catalyzed by metalloporphyrins.
    Nelkenbaum E; Dror I; Berkowitz B
    Chemosphere; 2007 Jun; 68(2):210-7. PubMed ID: 17335868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient and chemoselective iron catalyst for the hydrogenation of ketones.
    Casey CP; Guan H
    J Am Chem Soc; 2007 May; 129(18):5816-7. PubMed ID: 17439131
    [No Abstract]   [Full Text] [Related]  

  • 26. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.
    Vilé G; Almora-Barrios N; Mitchell S; López N; Pérez-Ramírez J
    Chemistry; 2014 May; 20(20):5926-37. PubMed ID: 24753096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of ZnSO
    Sun H; Fan Y; Sun X; Chen Z; Li H; Peng Z; Liu Z
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Copper Addition on the Activity and Stability of Iron-Based CO₂ Hydrogenation Catalysts.
    Bradley MJ; Ananth R; Willauer HD; Baldwin JW; Hardy DR; Williams FW
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28930186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
    Yang X
    Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade.
    El-Sepelgy O; Brzozowska A; Rueping M
    ChemSusChem; 2017 Apr; 10(8):1664-1668. PubMed ID: 28244251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary amines by transfer hydrogenative reductive amination of ketones by using cyclometalated Ir(III) catalysts.
    Talwar D; Poyatos Salguero N; Robertson CM; Xiao J
    Chemistry; 2014 Jan; 20(1):245-52. PubMed ID: 24516890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic Cyclooligomerization of Enones with Three Methylene Equivalents.
    Farley CM; Zhou YY; Banka N; Uyeda C
    J Am Chem Soc; 2018 Oct; 140(40):12710-12714. PubMed ID: 30216053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal-Organic Frameworks.
    Niu Z; Zhang W; Lan PC; Aguila B; Ma S
    Angew Chem Int Ed Engl; 2019 May; 58(22):7420-7424. PubMed ID: 30946520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron complexes for the catalytic transfer hydrogenation of acetophenone: steric and electronic effects imposed by alkyl substituents at phosphorus.
    Lagaditis PO; Lough AJ; Morris RH
    Inorg Chem; 2010 Nov; 49(21):10057-66. PubMed ID: 20925413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts.
    Ren D; He L; Yu L; Ding RS; Liu YM; Cao Y; He HY; Fan KN
    J Am Chem Soc; 2012 Oct; 134(42):17592-8. PubMed ID: 23020578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct synthesis of polyamides via catalytic dehydrogenation of diols and diamines.
    Zeng H; Guan Z
    J Am Chem Soc; 2011 Feb; 133(5):1159-61. PubMed ID: 21204554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts.
    Steiger P; Delmelle R; Foppiano D; Holzer L; Heel A; Nachtegaal M; Kröcher O; Ferri D
    ChemSusChem; 2017 Jun; 10(11):2505-2517. PubMed ID: 28338286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility.
    Taber DF; Joshi PV; Kanai K
    J Org Chem; 2004 Apr; 69(7):2268-71. PubMed ID: 15049618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.