These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34240846)

  • 41. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.
    Sioshansi R; Denholm P
    Environ Sci Technol; 2009 Feb; 43(4):1199-204. PubMed ID: 19320180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
    Raykin L; MacLean HL; Roorda MJ
    Environ Sci Technol; 2012 Jun; 46(11):6363-70. PubMed ID: 22568681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.
    Lee DY; Thomas VM; Brown MA
    Environ Sci Technol; 2013 Jul; 47(14):8022-30. PubMed ID: 23786706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The efficient operating parameter estimation for a simulated plug-in hybrid electric vehicle.
    Singh KV; Khandelwal R; Bansal HO; Singh D
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):18126-18141. PubMed ID: 34676482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels.
    Scown CD; Taptich M; Horvath A; McKone TE; Nazaroff WW
    Environ Sci Technol; 2013 Aug; 47(16):9044-52. PubMed ID: 23906086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Does Size Matter? The Influence of Size, Load Factor, Range Autonomy, and Application Type on the Life Cycle Assessment of Current and Future Medium- and Heavy-Duty Vehicles.
    Sacchi R; Bauer C; Cox BL
    Environ Sci Technol; 2021 Apr; 55(8):5224-5235. PubMed ID: 33735568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area.
    Gai Y; Minet L; Posen ID; Smargiassi A; Tétreault LF; Hatzopoulou M
    Environ Pollut; 2020 Oct; 265(Pt A):114983. PubMed ID: 32590240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A scenario-based approach to predict energy demand and carbon emission of electric vehicles on the electric grid.
    Cheung WM
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):77300-77310. PubMed ID: 35676573
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reducing motor vehicle greenhouse gas emissions in a non-California state: a case study of Minnesota.
    Boies A; Hankey S; Kittelson D; Marshall JD; Nussbaum P; Watts W; Wilson EJ
    Environ Sci Technol; 2009 Dec; 43(23):8721-9. PubMed ID: 19943638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbon emission of energy consumption of the electric vehicle development scenario.
    Wang M; Wang Y; Chen L; Yang Y; Li X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42401-42413. PubMed ID: 33813710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A; Azevedo IM; Michalek JJ
    Environ Sci Technol; 2016 Mar; 50(5):2165-74. PubMed ID: 26867100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050.
    Milovanoff A; Kim HC; De Kleine R; Wallington TJ; Posen ID; MacLean HL
    Environ Sci Technol; 2019 Feb; 53(4):2199-2208. PubMed ID: 30682256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating Low-Carbon Transportation Technologies When Demand Responds to Price.
    Roy M; Ghoddusi H; Trancik JE
    Environ Sci Technol; 2022 Feb; 56(4):2096-2106. PubMed ID: 35119259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monetary Health Co-Benefits and GHG Emissions Reduction Benefits: Contribution from Private On-the-Road Transport.
    Liou JL; Wu PI
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34064227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations.
    Kendall A; Price L
    Environ Sci Technol; 2012 Mar; 46(5):2557-63. PubMed ID: 22283799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Net air emissions from electric vehicles: the effect of carbon price and charging strategies.
    Peterson SB; Whitacre JF; Apt J
    Environ Sci Technol; 2011 Mar; 45(5):1792-7. PubMed ID: 21309508
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Health and Climate Incentives for the Deployment of Cleaner On-Road Vehicle Technologies.
    Minet L; Wang A; Hatzopoulou M
    Environ Sci Technol; 2021 May; 55(10):6602-6612. PubMed ID: 33929197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.