These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34240917)

  • 1. The hopping mechanism of the hydrated excess proton and its contribution to proton diffusion in water.
    Arntsen C; Chen C; Calio PB; Li C; Voth GA
    J Chem Phys; 2021 May; 154(19):194506. PubMed ID: 34240917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The curious case of the hydrated proton.
    Knight C; Voth GA
    Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of hydrated proton diffusion in ab initio molecular dynamics.
    Tse YL; Knight C; Voth GA
    J Chem Phys; 2015 Jan; 142(1):014104. PubMed ID: 25573550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lifetimes of excess protons in water using a dissociative water potential.
    Lockwood GK; Garofalini SH
    J Phys Chem B; 2013 Apr; 117(15):4089-97. PubMed ID: 23565831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving the Structural Debate for the Hydrated Excess Proton in Water.
    Calio PB; Li C; Voth GA
    J Am Chem Soc; 2021 Nov; 143(44):18672-18683. PubMed ID: 34723507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio molecular dynamics simulation of proton hopping in a model polymer membrane.
    Devanathan R; Idupulapati N; Baer MD; Mundy CJ; Dupuis M
    J Phys Chem B; 2013 Dec; 117(51):16522-9. PubMed ID: 24320080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The solvation effect on the rattling behaviour of the hydrated excess proton in water.
    Dong S; Bi S
    Phys Chem Chem Phys; 2019 Oct; 21(40):22385-22389. PubMed ID: 31577286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistate Reactive Molecular Dynamics Simulations of Proton Diffusion in Water Clusters and in the Bulk.
    Xu ZH; Meuwly M
    J Phys Chem B; 2019 Nov; 123(46):9846-9861. PubMed ID: 31647873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations.
    Yuan R; Napoli JA; Yan C; Marsalek O; Markland TE; Fayer MD
    ACS Cent Sci; 2019 Jul; 5(7):1269-1277. PubMed ID: 31403075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grotthuss Molecular Dynamics Simulations for Modeling Proton Hopping in Electrosprayed Water Droplets.
    Konermann L; Kim S
    J Chem Theory Comput; 2022 Jun; 18(6):3781-3794. PubMed ID: 35544700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study.
    Berkelbach TC; Lee HS; Tuckerman ME
    Phys Rev Lett; 2009 Dec; 103(23):238302. PubMed ID: 20366181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive-partitioning QM/MM for molecular dynamics simulations: 4. Proton hopping in bulk water.
    Pezeshki S; Lin H
    J Chem Theory Comput; 2015 Jun; 11(6):2398-411. PubMed ID: 26575540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton.
    Knight C; Maupin CM; Izvekov S; Voth GA
    J Chem Theory Comput; 2010 Oct; 6(10):3223-32. PubMed ID: 26616784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial solvation and slow transport of hydrated excess protons in non-ionic reverse micelles.
    Li Z; Voth GA
    Phys Chem Chem Phys; 2020 May; 22(19):10753-10763. PubMed ID: 32154815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton solvation and transport in hydrated nafion.
    Feng S; Voth GA
    J Phys Chem B; 2011 May; 115(19):5903-12. PubMed ID: 21510678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Special pair dance and partner selection: elementary steps in proton transport in liquid water.
    Markovitch O; Chen H; Izvekov S; Paesani F; Voth GA; Agmon N
    J Phys Chem B; 2008 Aug; 112(31):9456-66. PubMed ID: 18630857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air-Water Interface?
    Li Z; Li C; Wang Z; Voth GA
    J Phys Chem B; 2020 Jun; 124(24):5039-5046. PubMed ID: 32426982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion.
    Petersen MK; Voth GA
    J Phys Chem B; 2006 Sep; 110(37):18594-600. PubMed ID: 16970488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Proton Transport Pathways in Liquid Imidazole with First-Principles Molecular Dynamics.
    Long Z; Atsango AO; Napoli JA; Markland TE; Tuckerman ME
    J Phys Chem Lett; 2020 Aug; 11(15):6156-6163. PubMed ID: 32633523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.