These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 34240924)
1. Active learning and relevance vector machine in efficient estimate of basin stability for large-scale dynamic networks. Che Y; Cheng C Chaos; 2021 May; 31(5):053129. PubMed ID: 34240924 [TBL] [Abstract][Full Text] [Related]
3. On structural and dynamical factors determining the integrated basin instability of power-grid nodes. Kim H; Lee MJ; Lee SH; Son SW Chaos; 2019 Oct; 29(10):103132. PubMed ID: 31675814 [TBL] [Abstract][Full Text] [Related]
4. Power-grid stability predictions using transferable machine learning. Yang SG; Kim BJ; Son SW; Kim H Chaos; 2021 Dec; 31(12):123127. PubMed ID: 34972349 [TBL] [Abstract][Full Text] [Related]
6. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Carreras BA; Lynch VE; Dobson I; Newman DE Chaos; 2002 Dec; 12(4):985-994. PubMed ID: 12779622 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Based Localization in Large-Scale Wireless Sensor Networks. Bhatti G Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30487457 [TBL] [Abstract][Full Text] [Related]
8. Enhancing power grid synchronization and stability through time-delayed feedback control. Taher H; Olmi S; Schöll E Phys Rev E; 2019 Dec; 100(6-1):062306. PubMed ID: 31962463 [TBL] [Abstract][Full Text] [Related]
9. Asymmetry induces critical desynchronization of power grids. Jaros P; Levchenko R; Kapitaniak T; Kurths J; Maistrenko Y Chaos; 2023 Jan; 33(1):011104. PubMed ID: 36725642 [TBL] [Abstract][Full Text] [Related]
10. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. Dobson I; Carreras BA; Lynch VE; Newman DE Chaos; 2007 Jun; 17(2):026103. PubMed ID: 17614690 [TBL] [Abstract][Full Text] [Related]
12. Machine learning dynamical phase transitions in complex networks. Ni Q; Tang M; Liu Y; Lai YC Phys Rev E; 2019 Nov; 100(5-1):052312. PubMed ID: 31870001 [TBL] [Abstract][Full Text] [Related]
13. A Hybrid-Learning Algorithm for Online Dynamic State Estimation in Multimachine Power Systems. Tian G; Zhou Q; Birari R; Qi J; Qu Z IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5497-5508. PubMed ID: 32071009 [TBL] [Abstract][Full Text] [Related]
14. A complex network theory analytical approach to power system cascading failure-From a cyber-physical perspective. Guo H; Yu SS; Iu HHC; Fernando T; Zheng C Chaos; 2019 May; 29(5):053111. PubMed ID: 31154784 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Cascading Failures in Spatial Networks. Shunkun Y; Jiaquan Z; Dan L PLoS One; 2016; 11(4):e0153904. PubMed ID: 27093054 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo analysis of beam blocking grid design parameters: Scatter estimation and the importance of electron backscatter. Bootsma GJ; Ren L; Zhang H; Jin JY; Jaffray DA Med Phys; 2018 Mar; 45(3):1059-1070. PubMed ID: 29360154 [TBL] [Abstract][Full Text] [Related]
17. Efficient Phase Diagram Sampling by Active Learning. Dai C; Glotzer SC J Phys Chem B; 2020 Feb; 124(7):1275-1284. PubMed ID: 31964140 [TBL] [Abstract][Full Text] [Related]
18. Identifying nodal properties that are crucial for the dynamical robustness of multistable networks. Rungta PD; Meena C; Sinha S Phys Rev E; 2018 Aug; 98(2-1):022314. PubMed ID: 30253521 [TBL] [Abstract][Full Text] [Related]
19. The size of the sync basin revisited. Delabays R; Tyloo M; Jacquod P Chaos; 2017 Oct; 27(10):103109. PubMed ID: 29092425 [TBL] [Abstract][Full Text] [Related]
20. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]