BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34240950)

  • 1. Using data assimilation to train a hybrid forecast system that combines machine-learning and knowledge-based components.
    Wikner A; Pathak J; Hunt BR; Szunyogh I; Girvan M; Ott E
    Chaos; 2021 May; 31(5):053114. PubMed ID: 34240950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.
    Pathak J; Wikner A; Fussell R; Chandra S; Hunt BR; Girvan M; Ott E
    Chaos; 2018 Apr; 28(4):041101. PubMed ID: 31906641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining machine learning with knowledge-based modeling for scalable forecasting and subgrid-scale closure of large, complex, spatiotemporal systems.
    Wikner A; Pathak J; Hunt B; Girvan M; Arcomano T; Szunyogh I; Pomerance A; Ott E
    Chaos; 2020 May; 30(5):053111. PubMed ID: 32491877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining data assimilation and machine learning to infer unresolved scale parametrization.
    Brajard J; Carrassi A; Bocquet M; Bertino L
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200086. PubMed ID: 33583267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BAMCAFE: A Bayesian machine learning advanced forecast ensemble method for complex turbulent systems with partial observations.
    Chen N; Li Y
    Chaos; 2021 Nov; 31(11):113114. PubMed ID: 34881608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case.
    Mojgani R; Chattopadhyay A; Hassanzadeh P
    Chaos; 2022 Jun; 32(6):061105. PubMed ID: 35778119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction, forecasting, and stability of chaotic dynamics from partial data.
    Özalp E; Margazoglou G; Magri L
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37671991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-informed reservoir computing for efficient time-series prediction.
    Köster F; Patel D; Wikner A; Jaurigue L; Lüdge K
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37408150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the combination of data-driven and model-based elements in hybrid reservoir computing.
    Duncan D; Räth C
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.
    Vlachas PR; Byeon W; Wan ZY; Sapsis TP; Koumoutsakos P
    Proc Math Phys Eng Sci; 2018 May; 474(2213):20170844. PubMed ID: 29887750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pole balancing on the fingertip: model-motivated machine learning forecasting of falls.
    Debnath M; Chang J; Bhandari K; Nagy DJ; Insperger T; Milton JG; Ngu AHH
    Front Physiol; 2024; 15():1334396. PubMed ID: 38638278
    [No Abstract]   [Full Text] [Related]  

  • 14. Interpretable physiological forecasting in the ICU using constrained data assimilation and electronic health record data.
    Albers D; Sirlanci M; Levine M; Claassen J; Nigoghossian C; Hripcsak G
    J Biomed Inform; 2023 Sep; 145():104477. PubMed ID: 37604272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reservoir observers: Model-free inference of unmeasured variables in chaotic systems.
    Lu Z; Pathak J; Hunt B; Girvan M; Brockett R; Ott E
    Chaos; 2017 Apr; 27(4):041102. PubMed ID: 28456169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations.
    Gottwald GA; Reich S
    Chaos; 2021 Oct; 31(10):101103. PubMed ID: 34717332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The parameter Houlihan: A solution to high-throughput identifiability indeterminacy for brutally ill-posed problems.
    Albers DJ; Levine ME; Mamykina L; Hripcsak G
    Math Biosci; 2019 Oct; 316():108242. PubMed ID: 31454628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling nonlinear dynamical systems into arbitrary states using machine learning.
    Haluszczynski A; Räth C
    Sci Rep; 2021 Jun; 11(1):12991. PubMed ID: 34155228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable update strategy to improve water quality forecast accuracy in multivariate data assimilation using the ensemble Kalman filter.
    Park S; Kim K; Shin C; Min JH; Na EH; Park LJ
    Water Res; 2020 Jun; 176():115711. PubMed ID: 32272320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning delay coordinate dynamics for chaotic attractors from partial observable data.
    Young CD; Graham MD
    Phys Rev E; 2023 Mar; 107(3-1):034215. PubMed ID: 37073016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.