These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34240950)

  • 21. Assessing data assimilation frameworks for using multi-mission satellite products in a hydrological context.
    Khaki M; Hoteit I; Kuhn M; Forootan E; Awange J
    Sci Total Environ; 2019 Jan; 647():1031-1043. PubMed ID: 30180311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DEFM: Delay-embedding-based forecast machine for time series forecasting by spatiotemporal information transformation.
    Peng H; Wang W; Chen P; Liu R
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38572943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The parameter Houlihan: A solution to high-throughput identifiability indeterminacy for brutally ill-posed problems.
    Albers DJ; Levine ME; Mamykina L; Hripcsak G
    Math Biosci; 2019 Oct; 316():108242. PubMed ID: 31454628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.
    Kelly D; Majda AJ; Tong XT
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10589-94. PubMed ID: 26261335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface similarity parameter: A new machine learning loss metric for oscillatory spatio-temporal data.
    Wedler M; Stender M; Klein M; Ehlers S; Hoffmann N
    Neural Netw; 2022 Dec; 156():123-134. PubMed ID: 36257069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kalman filter data assimilation: targeting observations and parameter estimation.
    Bellsky T; Kostelich EJ; Mahalov A
    Chaos; 2014 Jun; 24(2):024406. PubMed ID: 24985460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forecasting Corn Yield With Machine Learning Ensembles.
    Shahhosseini M; Hu G; Archontoulis SV
    Front Plant Sci; 2020; 11():1120. PubMed ID: 32849688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems.
    Pyle R; Jovanovic N; Subramanian D; Palem KV; Patel AB
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200246. PubMed ID: 33583272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing.
    Wikner A; Harvey J; Girvan M; Hunt BR; Pomerance A; Antonsen T; Ott E
    Neural Netw; 2024 Feb; 170():94-110. PubMed ID: 37977092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can Short and Partial Observations Reduce Model Error and Facilitate Machine Learning Prediction?
    Chen N
    Entropy (Basel); 2020 Sep; 22(10):. PubMed ID: 33286844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37788385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybridizing traditional and next-generation reservoir computing to accurately and efficiently forecast dynamical systems.
    Chepuri R; Amzalag D; Antonsen TM; Girvan M
    Chaos; 2024 Jun; 34(6):. PubMed ID: 38838103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning algorithms for predicting the amplitude of chaotic laser pulses.
    Amil P; Soriano MC; Masoller C
    Chaos; 2019 Nov; 29(11):113111. PubMed ID: 31779344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model selection of chaotic systems from data with hidden variables using sparse data assimilation.
    Ribera H; Shirman S; Nguyen AV; Mangan NM
    Chaos; 2022 Jun; 32(6):063101. PubMed ID: 35778121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hybrid particle-ensemble Kalman filter for problems with medium nonlinearity.
    Grooms I; Robinson G
    PLoS One; 2021; 16(3):e0248266. PubMed ID: 33705463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A patient specific forecasting model for human albumin based on deep neural networks.
    Lei C; Wang Y; Zhao J; Li K; Jiang H; Wang Q
    Comput Methods Programs Biomed; 2020 Nov; 196():105555. PubMed ID: 32544776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data.
    Pathak J; Lu Z; Hunt BR; Girvan M; Ott E
    Chaos; 2017 Dec; 27(12):121102. PubMed ID: 29289043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knowledge-based learning of nonlinear dynamics and chaos.
    Jiahao TZ; Hsieh MA; Forgoston E
    Chaos; 2021 Nov; 31(11):111101. PubMed ID: 34881606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An ensemble learning based hybrid model and framework for air pollution forecasting.
    Chang YS; Abimannan S; Chiao HT; Lin CY; Huang YP
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38155-38168. PubMed ID: 32621183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extreme Events Prediction from Nonlocal Partial Information in a Spatiotemporally Chaotic Microcavity Laser.
    Pammi VA; Clerc MG; Coulibaly S; Barbay S
    Phys Rev Lett; 2023 Jun; 130(22):223801. PubMed ID: 37327410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.