These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 34240951)

  • 1. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise.
    Lin L; Duan J; Wang X; Zhang Y
    Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A decision-making Fokker-Planck model in computational neuroscience.
    Carrillo JA; Cordier S; Mancini S
    J Math Biol; 2011 Nov; 63(5):801-30. PubMed ID: 21184081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interacting Particle Solutions of Fokker-Planck Equations Through Gradient-Log-Density Estimation.
    Maoutsa D; Reich S; Opper M
    Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fokker-Planck perspective on stochastic delay systems: exact solutions and data analysis of biological systems.
    Frank TD; Beek PJ; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021912. PubMed ID: 14525011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum Entropy Probability Density Principle in Probabilistic Investigations of Dynamic Systems.
    Náprstek J; Fischer C
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time evolution of probability density in stochastic dynamical systems with time delays: The governing equation and its numerical solution.
    Sun X; Yang F
    Chaos; 2022 Dec; 32(12):123124. PubMed ID: 36587317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic dynamo model for subcritical transition.
    Fedotov S; Bashkirtseva I; Ryashko L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066307. PubMed ID: 16906976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
    Grima R; Thomas P; Straube AV
    J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation.
    Sun W; Feng J; Su J; Liang Y
    Chaos; 2022 Mar; 32(3):033131. PubMed ID: 35364842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system.
    Shiino M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies.
    Zhou B; Jiang D; Dai Y; Hayat T; Alsaedi A
    Chaos Solitons Fractals; 2021 Feb; 143():110601. PubMed ID: 33551580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stationary distribution and probability density function analysis of a stochastic Microcystins degradation model with distributed delay.
    He Y; Wei Y; Tao J; Bi B
    Math Biosci Eng; 2024 Jan; 21(1):602-626. PubMed ID: 38303436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical behavior of autoassociative memory performing novelty filtering for signal enhancement.
    Ko H; Jacyna GM
    IEEE Trans Neural Netw; 2000; 11(5):1152-61. PubMed ID: 18249841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous learning of nonlocal stochastic neuron dynamics.
    Maltba TE; Zhao H; Tartakovsky DM
    Cogn Neurodyn; 2022 Jun; 16(3):683-705. PubMed ID: 35603048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network representation of the probability density function of diffusion processes.
    Uy WIT; Grigoriu MD
    Chaos; 2020 Sep; 30(9):093118. PubMed ID: 33003919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.