These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34241033)

  • 1. Crystal growth of bcc titanium from the melt and interfacial properties: A molecular dynamics simulation study.
    Rozas RE; MacDowell LG; Toledo PG; Horbach J
    J Chem Phys; 2021 May; 154(18):184704. PubMed ID: 34241033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local collective dynamics at equilibrium BCC crystal-melt interfaces.
    Zhang X; Lu W; Liang Z; Wang Y; Lv S; Liang H; Laird BB; Yang Y
    J Chem Phys; 2022 Aug; 157(8):084709. PubMed ID: 36050002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the kinetic anisotropy of the soft-sphere bcc crystal-melt interfaces.
    Wang Y; Liang Z; Zhang X; Lu W; Yu Z; Ma X; Liang H; Yang Y
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metastable-solid phase diagrams derived from polymorphic solidification kinetics.
    Sadigh B; Zepeda-Ruiz L; Belof JL
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33619094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic interfacial free energies of the hard-sphere crystal-melt interfaces.
    Mu Y; Houk A; Song X
    J Phys Chem B; 2005 Apr; 109(14):6500-4. PubMed ID: 16851729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.
    Benet J; MacDowell LG; Sanz E
    J Chem Phys; 2015 Apr; 142(13):134706. PubMed ID: 25854257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bcc crystal-fluid interfacial free energy in Yukawa systems.
    Heinonen V; Mijailović A; Achim CV; Ala-Nissila T; Rozas RE; Horbach J; Löwen H
    J Chem Phys; 2013 Jan; 138(4):044705. PubMed ID: 23387613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic coefficient for hard-sphere crystal growth from the melt.
    Amini M; Laird BB
    Phys Rev Lett; 2006 Nov; 97(21):216102. PubMed ID: 17155752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of the solid-liquid interface migration in terbium.
    Mendelev MI; Zhang F; Song H; Sun Y; Wang CZ; Ho KM
    J Chem Phys; 2018 Jun; 148(21):214705. PubMed ID: 29884043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the crystal-melt interfacial free energy of succinonitrile from molecular simulation.
    Feng X; Laird BB
    J Chem Phys; 2006 Jan; 124(4):044707. PubMed ID: 16460200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stiffness of the interface between a colloidal body-centered cubic crystal and its liquid.
    Hwang H; Weitz DA; Spaepen F
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25225-25229. PubMed ID: 32973094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations.
    Zepeda-Ruiz LA; Sadigh B; Chernov AA; Haxhimali T; Samanta A; Oppelstrup T; Hamel S; Benedict LX; Belof JL
    J Chem Phys; 2017 Nov; 147(19):194704. PubMed ID: 29166088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct calculation of the crystal-melt interfacial free energy via molecular dynamics computer simulation.
    Laird BB; Davidchack RL
    J Phys Chem B; 2005 Sep; 109(38):17802-12. PubMed ID: 16853283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical origins of temperature continuity at an interface between a crystal and its melt.
    Vo TQ; Kim B
    J Chem Phys; 2018 Jan; 148(3):034703. PubMed ID: 29352797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traveling waves of the solidification and melting of cubic crystal lattices.
    Ankudinov V; Elder KR; Galenko PK
    Phys Rev E; 2020 Dec; 102(6-1):062802. PubMed ID: 33466054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostat-induced spurious interfacial resistance in non-equilibrium molecular dynamics simulations of solid-liquid and solid-solid systems.
    Ghatage D; Tomar G; Shukla RK
    J Chem Phys; 2020 Oct; 153(16):164110. PubMed ID: 33138391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of charged colloids confined between hard walls: pre-melting and pre-freezing across the BCC-fluid coexistence.
    Eshraghi M; Horbach J
    Soft Matter; 2018 May; 14(20):4141-4149. PubMed ID: 29700548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulation of crystal nucleation in n-octane melts.
    Yi P; Rutledge GC
    J Chem Phys; 2009 Oct; 131(13):134902. PubMed ID: 19814570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lennard-Jones systems near solid walls: computing interfacial free energies from molecular simulation methods.
    Benjamin R; Horbach J
    J Chem Phys; 2013 Aug; 139(8):084705. PubMed ID: 24007027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.