These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34241072)

  • 1. Comparison of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method and the density matrix renormalization group (DMRG) for ground state properties of linear rotor chains.
    Mainali S; Gatti F; Iouchtchenko D; Roy PN; Meyer HD
    J Chem Phys; 2021 May; 154(17):174106. PubMed ID: 34241072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground states of linear rotor chains via the density matrix renormalization group.
    Iouchtchenko D; Roy PN
    J Chem Phys; 2018 Apr; 148(13):134115. PubMed ID: 29626881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method.
    Meng Q; Faraji S; Vendrell O; Meyer HD
    J Chem Phys; 2012 Oct; 137(13):134302. PubMed ID: 23039594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Proton Effects from Density Matrix Renormalization Group Calculations.
    Feldmann R; Muolo A; Baiardi A; Reiher M
    J Chem Theory Comput; 2022 Jan; 18(1):234-250. PubMed ID: 34978441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematically expanding nondirect product bases within the pruned multi-configuration time-dependent Hartree (MCTDH) method: A comparison with multi-layer MCTDH.
    Wodraszka R; Carrington T
    J Chem Phys; 2017 May; 146(19):194105. PubMed ID: 28527461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method.
    Wodraszka R; Carrington T
    J Chem Phys; 2016 Jul; 145(4):044110. PubMed ID: 27475351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Perturbative Density Matrix Renormalization Group Algorithm for Large Active Spaces.
    Guo S; Li Z; Chan GK
    J Chem Theory Comput; 2018 Aug; 14(8):4063-4071. PubMed ID: 29927592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time evolution of ML-MCTDH wavefunctions. II. Application of the projector splitting integrator.
    Lindoy LP; Kloss B; Reichman DR
    J Chem Phys; 2021 Nov; 155(17):174109. PubMed ID: 34742222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum phase transitions in one-dimensional nanostructures: a comparison between DFT and DMRG methodologies.
    Pauletti T; Sanino M; Gimenes L; Carvalho IM; França VV
    J Mol Model; 2024 Jul; 30(8):268. PubMed ID: 39012396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing vibrational eigenstates with tree tensor network states (TTNS).
    Larsson HR
    J Chem Phys; 2019 Nov; 151(20):204102. PubMed ID: 31779335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eigenstate calculation in the state-averaged (multi-layer) multi-configurational time-dependent Hartree approach.
    Hoppe H; Manthe U
    J Chem Phys; 2024 Jan; 160(3):. PubMed ID: 38230812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds.
    Kurashige Y; Yanai T
    J Chem Phys; 2009 Jun; 130(23):234114. PubMed ID: 19548718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonances of HCO Computed Using an Approach Based on the Multiconfiguration Time-Dependent Hartree Method.
    Ndengué SA; Dawes R; Gatti F; Meyer HD
    J Phys Chem A; 2015 Dec; 119(50):12043-51. PubMed ID: 26070014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavepacket dynamics and the multi-configurational time-dependent Hartree approach.
    Manthe U
    J Phys Condens Matter; 2017 Jun; 29(25):253001. PubMed ID: 28430111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the multi-layer multi-configurational time-dependent Hartree approach for bosons and fermions.
    Manthe U; Weike T
    J Chem Phys; 2017 Feb; 146(6):064117. PubMed ID: 28201897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A collocation-based multi-configuration time-dependent Hartree method using mode combination and improved relaxation.
    Wodraszka R; Carrington T
    J Chem Phys; 2020 Apr; 152(16):164117. PubMed ID: 32357767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials.
    Welsch R; Manthe U
    J Chem Phys; 2012 Dec; 137(24):244106. PubMed ID: 23277927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method.
    Zhao B; Zhang DH; Lee SY; Sun Z
    J Chem Phys; 2014 Apr; 140(16):164108. PubMed ID: 24784254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multilayer MCTDH study on the full dimensional vibronic dynamics of naphthalene and anthracene cations.
    Meng Q; Meyer HD
    J Chem Phys; 2013 Jan; 138(1):014313. PubMed ID: 23298047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles hamiltonian and to pyrazine.
    Vendrell O; Meyer HD
    J Chem Phys; 2011 Jan; 134(4):044135. PubMed ID: 21280715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.